Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 146-160.doi: 10.11707/j.1001-7488.LYKX20240323
• Research papers • Previous Articles Next Articles
Yiman Zhang,Longjun Lu,Yuting Zhang,Qi Yang,Xiao Han,Zaikang Tong,Junhong Zhang*()
Received:
2024-06-03
Online:
2025-05-20
Published:
2025-05-24
Contact:
Junhong Zhang
E-mail:zhangjunhong@zafu.edu.cn
CLC Number:
Yiman Zhang,Longjun Lu,Yuting Zhang,Qi Yang,Xiao Han,Zaikang Tong,Junhong Zhang. Analysis of Purple Acid Phosphatases Genes (PAPs) Family in Phoebe bournei and the Functions of Three PAPs under Low Phosphorus Stress[J]. Scientia Silvae Sinicae, 2025, 61(5): 146-160.
Table 1
Low phosphorus treatment nutrient solution formulation"
成分Component | 加磷 +Pi/(mmol·L?1) | 缺磷 -Pi/(mmol·L?1) |
CaCl2·2H2O | 0.5 | 0.5 |
MgSO4·7H2O | 0.5 | 0.5 |
KCl | 0 | 1.0 |
KH2PO4 | 1.0 | 0 |
H3BO3 | 0.1 | 0.1 |
MnCl2 | 20×10?3 | 20×10?3 |
CuSO4·5H2O | 1×10?3 | 1×10?3 |
ZnSO4·7H2O | 3×10?3 | 3×10?3 |
Na2MoO4·2H2O | 1×10?3 | 1×10?3 |
CoCl2·6H2O | 1×10?4 | 1×10?4 |
FeSO4·7H2O | 0.1 | 0.1 |
Table 2
RT-qPCR primers of PbPAPs"
引物名称Primer | 序列Sequence(5’→3’) |
PbPAP10a-F | CAGTTGTGATGGGAGTGATGA |
PbPAP10a-R | GTGAACCTGTTGTGGAGCAT |
PbPAP15a-F | AAAGACCATCCCTACCACCC |
PbPAP15a-R | GAGAGGGTGACGGAGATCTG |
PbPAP26-F | CTTTTGAGCTCTGTGGGCAA |
PbPAP26-R | ACCTTGAGTAATATGGACCTGCT |
PbCBP20-F | GAAGGCAGACAATGGG |
PbCBP20-R | ATAGTGCGATGGGACAG |
Table 4
Physicochemical properties of PbPAPs"
蛋白 Protein | 基因编号 Gene ID | 氨基酸 Amino acid | 分子量 MW/kDa | 等电点 PI |
PbPAP1 | Phbou.01G1223.1 | 613 | 69.05 | 6.10 |
PbPAP2 | Phbou.01G1352.1 | 646 | 72.98 | 5.46 |
PbPAP9 | Phbou.01G1351.1 | 648 | 73.94 | 6.16 |
PbPAP10a | Phbou.01G2906.1 | 473 | 54.53 | 6.55 |
PbPAP10b | Phbou.12G1471.1 | 456 | 52.32 | 6.70 |
PbPAP15a | Phbou.01G3123.1 | 545 | 62.01 | 5.51 |
PbPAP15b | Phbou.08G1918.1 | 547 | 61.92 | 5.26 |
PbPAP16a | Phbou.01G3288.1 | 376 | 42.08 | 7.13 |
PbPAP16b | Phbou.01G3289.1 | 353 | 39.96 | 6.00 |
PbPAP17a | Phbou.01G3733.1 | 326 | 36.73 | 5.43 |
PbPAP17b | Phbou.02G2250.1 | 329 | 37.38 | 5.25 |
PbPAP18 | Phbou.10G0372.1 | 437 | 49.62 | 5.59 |
PbPAP20 | Phbou.05G2290.1 | 422 | 46.90 | 5.58 |
PbPAP22 | Phbou.04G1339.1 | 441 | 49.96 | 5.89 |
PbPAP23 | Phbou.11G1361.1 | 543 | 60.84 | 5.52 |
PbPAP26 | Phbou.03G0433.1 | 480 | 55.30 | 6.47 |
PbPAP27a | Phbou.01G3074.1 | 615 | 69.27 | 5.85 |
PbPAP27b | Phbou.08G1858.1 | 620 | 69.73 | 6.06 |
PbPAP27c | Phbou.03G0971.1 | 626 | 69.75 | 5.28 |
PbPAP28 | Phbou.03G0037.1 | 402 | 45.51 | 5.80 |
PbPAP29a | Phbou.08G0566.1 | 606 | 66.91 | 8.49 |
PbPAP29b | Phbou.07G1718.1 | 372 | 41.02 | 5.36 |
Table 5
Conserved domain of PbPAPs"
蛋白 Protein | 保守结构域 Domain | ||
PbPAP1 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP2 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP9 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP10a | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP10b | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP15a | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP15b | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP16a | Metallophos | ||
PbPAP16b | Metallophos | ||
PbPAP17a | Metallophos | ||
PbPAP17b | Metallophos | ||
PbPAP18 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP20 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP22 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP23 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP26 | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP27a | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP27b | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP27c | Pur_ac_phosph_N | Metallophos | Metallophos_C |
PbPAP28 | Metallophos | ||
PbPAP29a | Metallophos | ||
PbPAP29b | Metallophos |
Fig.4
Morphological analysis of the root system between two Phoebe bournei families under low phosphorus A: Root scan image, B: Root length, C: Root surface area, D: Number of nodes, E: Number of forks. Data are mean±SD, asterisks represent differences between +Pi and -Pi groups for the same treatment days (*P<0.05, **P<0.01),ns indicates no significant."
Fig.5
Changes in net photosynthetic rate and Fv/Fm of two Phoebe bournei families under low phosphorus stress A: Net photosynthetic rate, B: Fv/Fm. Data are mean±SD, asterisks represent differences between +Pi and -Pi groups on the same treatment days (*P<0.05, **P<0.01). Different letters represent the differences within the -Pi group between the two families on the same treatment day."
Fig.6
Analysis of acid phosphatase activity and inorganic phosphorus content in leaves and roots of two Phoebe bournei families under low phosphorus stress A, B: ACP activity analysis, C, D: Pi content analysis. Data are mean±SD, asterisks represent differences between +Pi and -Pi groups on the same treatment days (*P<0.05, **P<0.01). Different letters represent differences within the -Pi group between two families on the same treatment day."
Fig.7
Changes in relative expression of PbPAPs in leaves and roots under low phosphorus stress A, B: The relative expression level of PbPAP10a; C, D: The relative expression levels of PbPAP15a; E, F: The relative expression level of PbPAP26. Data are mean±SD, asterisks represent differences between +Pi and -Pi groups on the same treatment days (*P<0.05, **P<0.01). Different letters represent differences within -Pi groups between two families on the same treatment day."
Fig.8
Identification, RT-qPCR, acid phosphatase activity and inorganic phosphorus content analysis of Phoebe bournei transgenic plants A: Identification of transgenic plants in P. bournei hairy root; B: Relative expression levels of three genes in OE; C: Pi content in OE; D: ACP activity in OE. Data as mean±SD, asterisks represent differences between EV and OE (*P<0.05, **P<0.01)."
Fig.10
Root length analysis of transgenic Arabidopsis thaliana under two phosphorus concentration treatments A: Arabidopsis thaliana growth under 0 P treatment, B: A. thaliana growth under 1 P treatment. Data are mean±SD. Different lowercase letters represent differences between wildtype and overexpression line."
Fig.11
Analysis of ACP activity and Pi content after treatment of transgenic Arabidopsis thaliana A, B: Analysis of ACP activity in transgenic Arabidopsis thaliana after treatment with different concentrations of phosphorus; C, D: Analysis of Pi content in transgenic A. thaliana after treatment with different concentrations of phosphorus. Data are mean±SD, and lowercase letters represent the difference between WT and OE."
陈 锡, 陈 莹, 刘晓霞, 等. FaGST基因过量表达获得拟南芥转基因植株. 贵州农业科学, 2022, 50 (7): 21- 25.
doi: 10.3969/j.issn.1001-3601.2022.07.004 |
|
Chen X, Chen Y, Liu X X, et al. Transgenic Arbidopsis thaliana plants with FaGST gene overexpression. Guizhou Agricultural Sciences, 2022, 50 (7): 21- 25.
doi: 10.3969/j.issn.1001-3601.2022.07.004 |
|
丁 洪, 李生秀, 郭庆元, 等. 酸性磷酸酶活性与大豆耐低磷能力的相关研究. 植物营养与肥料学报, 1997, 3 (2): 123- 128.
doi: 10.3321/j.issn:1008-505X.1997.02.005 |
|
Ding H, Li S X, Guo Q Y, et al. Studies on the correlation between acid phosphatase activity and low phosphorus tolerance in soybean. Plant Nutrition and Fertilizer Science, 1997, 3 (2): 123- 128.
doi: 10.3321/j.issn:1008-505X.1997.02.005 |
|
杜普旋, 刘 浩, 胡冬秀, 等. 花生紫色酸性磷酸酶基因家族的鉴定及表达分析. 中国油料作物学报, 2022, 44 (3): 522- 531. | |
Du P X, Liu H, Hu D X, et al. Genome-wide identification and expression analysis of purple acid phosphatase (PAPs) gene family in peanut. Chinese Journal of Oil Crop Sciences, 2022, 44 (3): 522- 531. | |
范辉华, 李建民, 陈永滨, 等. 闽楠光合特性测定分析. 西部林业科学, 2016, 45 (5): 49- 53. | |
Fan H H, Li J M, Chen Y B, et al. Photosynthetic characteristics of Phoebe bournei. Journal of West China Forestry Science, 2016, 45 (5): 49- 53. | |
黄小辉, 夏 鹰, 冯大兰, 等. 缺磷胁迫对核桃幼苗生长及生理特征的影响. 土壤通报, 2022, 53 (3): 613- 622. | |
Huang X H, Xia Y, Feng D L, et al. Effects of phosphorus deficiency stress on growth and physiology of walnut seedlings. Chinese Journal of Soil Science, 2022, 53 (3): 613- 622. | |
刘 浩, 李玉龙, 汤萌萌, 等. 拟南芥miR156与miR399在低磷胁迫中的对话机制初探. 河南农业科学, 2019, 48 (7): 54- 58. | |
Liu H, Li Y L, Tang M M, et al. Initial exploration of cross talk between miR156 and miR399 of Arabidopsis thaliana under low phosphorus stress. Journal of Henan Agricultural Sciences, 2019, 48 (7): 54- 58. | |
刘攀道, 黄 睿, 许文茸, 等. 植物紫色酸性磷酸酶的研究进展. 热带作物学报, 2019, 40 (2): 410- 416.
doi: 10.3969/j.issn.1000-2561.2019.02.028 |
|
Liu P D, Huang R, Xu W R, et al. Research progress of purple acid phosphatase in plants. Chinese Journal of Tropical Crops, 2019, 40 (2): 410- 416.
doi: 10.3969/j.issn.1000-2561.2019.02.028 |
|
庞 欣, 程 远, 郭勤卫, 等. 辣椒紫色酸性磷酸酶基因家族的鉴定与表达特征. 浙江农业学报, 2017, 29 (9): 1498- 1505.
doi: 10.3969/j.issn.1004-1524.2017.09.11 |
|
Pang X, Cheng Y, Guo Q W, et al. Genome-wide identification and expression analysis of purple acid phosphatases genes in pepper. Acta Agriculturae Zhejiangensis, 2017, 29 (9): 1498- 1505.
doi: 10.3969/j.issn.1004-1524.2017.09.11 |
|
钱 方, 胡利娟, 余 婕, 等. 甘蓝型油菜HIPPs基因家族的鉴定与表达分析. 植物遗传资源学报, 2022, 23 (4): 1- 18. | |
Qian F, Hu L J, Yu J, et al. Identification and expression analysis of HIPPs gene family in Brassica napus L. Journal of Plant Genetic Resources, 2022, 23 (4): 1- 18. | |
田 江, 梁翠月, 陆 星, 等. 根系分泌物调控植物适应低磷胁迫的机制. 华南农业大学学报, 2019, 40 (5): 175- 185.
doi: 10.7671/j.issn.1001-411X.201905068 |
|
Tian J, Liang C Y, Lu X, et al. Mechanism of root exudates regulating plant responses to phosphorus deficiency. Journal of South China Agricultural University, 2019, 40 (5): 175- 185.
doi: 10.7671/j.issn.1001-411X.201905068 |
|
田璟鸾. 2013. 水稻紫色酸性磷酸酶Ia亚家族基因的功能研究. 杭州: 浙江大学. | |
Tian J L. 2013. Funcitional analysis of genes in rice purple acid phosphatase in subgroup. Hangzhou: Zhejiang University. [in Chinese] | |
魏 铭, 王鑫伟, 陈 博, 等. 植物紫色酸性磷酸酶基因家族功能研究进展. 植物学报, 2019, 54 (1): 93- 101.
doi: 10.11983/CBB18044 |
|
Wei M, Wang X W, Chen B, et al. Progress in the functional study of the purple acid phosphatase gene family in plants. Chinese Bulletin of Botany, 2019, 54 (1): 93- 101.
doi: 10.11983/CBB18044 |
|
吴梦洁, 洪家都, 李芳燕, 等. 发根农杆菌介导的闽楠遗传转化体系构建与优化. 核农学报, 2023, 37 (8): 1516- 1522.
doi: 10.11869/j.issn.1000-8551.2023.08.1516 |
|
Wu M J, Hong J D, Li F Y, et al. Construction and optimization of genetic transformation system mediated by agrobacterium rhizogenes in Phoebe bournei. Journal of Nuclear Agricultural Sciences, 2023, 37 (8): 1516- 1522.
doi: 10.11869/j.issn.1000-8551.2023.08.1516 |
|
易 双, 聂 治, 张 啸, 等. 玉米紫色酸性磷酸酶(PAPs)基因家族的鉴定与低磷响应特征. 农业生物技术学报, 2015, 23 (3): 281- 290.
doi: 10.3969/j.issn.1674-7968.2015.03.001 |
|
Yi S, Nie Z, Zhang X, et al. Identification of maize (Zea mays) purple acid phosphatase (PAPs) genes family and their characterization responses to phosphorus starvation. Journal of Agricultural Biotechnology, 2015, 23 (3): 281- 290.
doi: 10.3969/j.issn.1674-7968.2015.03.001 |
|
阴超燕. 2019. 茶树和杨树中紫色酸性磷酸酶基因的鉴定及对磷铁胁迫的响应. 南京: 南京林业大学. | |
Yin C Y. 2019. Identification of purple acid phosphatases (PAPs) genes in tea plants and poplar and their expression responses to phosphorus deficency and excess iron. Nanjing: Nanjing Forestry University. [in Chinese] | |
张俊红, 王 洋, 周生财, 等. 闽楠群体遗传结构分析与核心种质库构建. 林业科学, 2024, 60 (1): 68- 79.
doi: 10.11707/j.1001-7488.LYKX20230138 |
|
Zhang J H, Wang Y, Zhou S C, et al. Genetic structure analysis and core germplasm collection construction of Phoebe bournei populations. Scientia Silvae Sinicae, 2024, 60 (1): 68- 79.
doi: 10.11707/j.1001-7488.LYKX20230138 |
|
周梦岩, 何冬梅, 李亚超, 等. 紫色酸性磷酸酶在植物响应低磷胁迫中的作用研究进展. 分子植物育种, 2021, 19 (11): 3763- 3770. | |
Zhou M Y, He D M, Li Y C, et al. Research progress of the role of purple acid phosphatase in plant response to low phosphorus stress. Molecular Plant Breeding, 2021, 19 (11): 3763- 3770. | |
朱亚军. 2017. 闽楠低温胁迫RNA-Seq分析及MYB转录因子家族的鉴定. 杭州: 浙江农林大学. | |
Zhu Y J. 2017. RNA-Seq analysis and identification of MYB transcription factor family in Phoebe bournei under low temperature stress. Hangzhou: Zhejiang A & F University. [in Chinese] | |
Bailey T L, Johnson J, Grant C E, et al. The MEME suite. Nucleic Acids Research, 2015, 43, W39- W49.
doi: 10.1093/nar/gkv416 |
|
Bhadouria J, Giri J. Purple acid phosphatases: roles in phosphate utilization and new emerging functions. Plant Cell Reports, 2022, 41 (1): 33- 51.
doi: 10.1007/s00299-021-02773-7 |
|
Chiou T J, Lin S I. Signaling network in sensing phosphate availability in plants. Annual Review of Plant Biology, 2011, 62, 185- 206.
doi: 10.1146/annurev-arplant-042110-103849 |
|
Ding K, Zhang Y T, Yrjälä K, et al. The introduction of Phoebe bournei into Cunninghamia lanceolata monoculture plantations increased microbial network complexity and shifted keystone taxa. Forest Ecology and Management, 2022, 509, 120072.
doi: 10.1016/j.foreco.2022.120072 |
|
Ding K, Zhang Y T, Wang L, et al. Forest conversion from pure to mixed Cunninghamia lanceolata plantations enhances soil multifunctionality, stochastic processes, and stability of bacterial networks in subtropical southern China. Plant and Soil, 2023, 488 (1/2): 411- 429. | |
Dionisio G, Madsen C K, Holm P B, et al. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiology, 2011, 156 (3): 1087- 1100.
doi: 10.1104/pp.110.164756 |
|
Dissanayaka D M S B, Plaxton W C, Lambers H, et al. 2018. Molecular mechanisms underpinning phosphorus-use efficiency in rice. Plant, Cell & Environment, 41(7): 1483–1496. | |
Duff S M G, Sarath G, Plaxton W C. The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 1994, 90 (4): 791- 800.
doi: 10.1111/j.1399-3054.1994.tb02539.x |
|
Ham B-K, Chen J Y, Yan Y, et al. Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology, 2018, 49, 1- 9.
doi: 10.1016/j.copbio.2017.07.005 |
|
Han X, Zhang J H, Han S, et al. The chromosome-scale genome of Phoebe bournei reveals contrasting fates of terpene synthase (TPS)-a and TPS-b subfamilies. Plant Communications, 2022, 3 (6): 100410.
doi: 10.1016/j.xplc.2022.100410 |
|
Kuang R B, Chan K-H, Yeung E, et al. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase cctivity, in Arabidopsis. Plant Physiology, 2009, 151 (1): 199- 209.
doi: 10.1104/pp.109.143180 |
|
Li W-Y F, Shao G H, Lam H-M. Ectopic expression of GmPAP3 alleviates oxidative damage caused by salinity and osmotic stresses. New Phytologist, 2008, 178 (1): 80- 91.
doi: 10.1111/j.1469-8137.2007.02356.x |
|
Liang C Y, Wang J X, Zhao J, et al. Control of phosphate homeostasis through gene regulation in crops. Current Opinion in Plant Biology, 2014, 21, 59- 66.
doi: 10.1016/j.pbi.2014.06.009 |
|
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 2001, 25 (4): 402- 408.
doi: 10.1006/meth.2001.1262 |
|
Olczak M, Morawiecka B, Watorek W. Plant purple acid phosphatases – genes, structures and biological function. Acta Biochimica Polonica, 2003, 50 (4): 1245- 1256.
doi: 10.18388/abp.2003_3648 |
|
McPhie P. The protein protocols handbook. Analytical Biochemistry, 2003, 315 (2): 289. | |
Plaxton W C, Tran H T. Metabolic adaptations of phosphate-starved plants. Plant Physiology, 2011, 156 (3): 1006- 1015.
doi: 10.1104/pp.111.175281 |
|
Robinson W D, Carson I, Ying S, et al. Eliminating the purple acid phosphatase AtPAP26 in Arabidopsis thaliana delays leaf senescence and impairs phosphorus remobilization. New Phytologist, 2012, 196 (4): 1024- 1029.
doi: 10.1111/nph.12006 |
|
Schenk G, Mitić N, Hanson G R, et al. Purple acid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coordination Chemistry Reviews, 2013, 257 (2): 473- 482.
doi: 10.1016/j.ccr.2012.03.020 |
|
Tian J L, Wang C, Zhang Q, et al. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice. Journal of Integrative Plant Biology, 2012, 54 (9): 631- 639.
doi: 10.1111/j.1744-7909.2012.01143.x |
|
Tran H T, Qian W, Hurley B A, et al. 2010. Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana. Plant, Cell & Environment, 33(11): 1789–1803. | |
Vance C P, Uhde-Stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 2003, 157 (3): 423- 447.
doi: 10.1046/j.1469-8137.2003.00695.x |
|
Vineh M A A, Sabet M S, Karimzadeh G. Effect of AtPAP17 and AtPAP26 genes overexpression on yield and yield components under salt stress in Arabidopsis thaliana plant. Environmental Stresses in Crop Sciences, 2021, 2788, 1725. | |
Wang L S, Liu D. Arabidopsis purple acid phosphatase 10 is a component of plant adaptive mechanism to phosphate limitation. Plant Signaling & Behavior, 2012, 7 (3): 306- 310. | |
Wang L S, Liu D. Functions and regulation of phosphate starvation-induced secreted acid phosphatases in higher plants. Plant Science, 2018, 271, 108- 116.
doi: 10.1016/j.plantsci.2018.03.013 |
|
Wang L S, Lu S L, Zhang Y, et al. Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. Journal of Integrative Plant Biology, 2014, 56 (3): 299- 314.
doi: 10.1111/jipb.12184 |
|
Wang L S, Li Z, Qian W Q, et al. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation. Plant Physiology, 2011, 157 (3): 1283- 1299.
doi: 10.1104/pp.111.183723 |
|
Wang X R, Wang Y X, Tian J, et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiology, 2009, 151 (1): 233- 240.
doi: 10.1104/pp.109.138891 |
|
Wasaki J, Yamamura T, Shinano T, et al. Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant and Soil, 2003, 248 (1/2): 129- 136.
doi: 10.1023/A:1022332320384 |
|
Xie Z M, Fong W P, Tsang W K. Engineering and optimization of phosphate-responsive phytase expression in Pichia pastoris yeast for phytate hydrolysis. Enzyme and Microbial Technology, 2020, 137, 109533.
doi: 10.1016/j.enzmictec.2020.109533 |
|
Zhang J H, Lin Y, Wu F M, et al. Profiling of microRNAs and their targets in roots and shoots reveals a potential miRNA-mediated interaction network in response to phosphate deficiency in the forestry tree Betula luminifera. Frontiers in Genetics, 2021b, 12, 552454.
doi: 10.3389/fgene.2021.552454 |
|
Zhang Q, Wang C, Tian J, et al. 2011. Identification of rice purple acid phosphatases related to posphate starvation signalling. Plant Biology (Stuttgart, Germany), 13(1): 7–15. | |
Zhang W Y, Gruszewski H A, Chevone B I, et al. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiology, 2008, 146 (2): 431- 440.
doi: 10.1104/pp.107.109934 |
|
Zhang Y T, Ding K, Yrjälä K, et al. Introduction of broadleaf species into monospecific Cunninghamia lanceolata plantations changed the soil Acidobacteria subgroups composition and nitrogen-cycling gene abundances. Plant and Soil, 2021a, 467 (1/2): 29- 46. | |
Zhou X Y, Zhang X P, Li W K, et al. Electronic effect on bimetallic catalysts: cleavage of phosphodiester mediated by Fe(III)-Zn(II) purple acid phosphatase mimics. Inorganic Chemistry, 2020, 59 (17): 12065- 12074.
doi: 10.1021/acs.inorgchem.0c01011 |
|
Zhu S N, Guo Q, Xue Y B, et al. 2024. Impaired glycosylation of GmPAP15a, a root-associated purple acid phosphatase, inhibits extracellular phytate-P utilization in soybean. Plant, Cell and Environment, 47(1): 259–277. |
[1] | Huang Jin, Zhang Junhong, Tong Zaikang, Yang Qi. Effects of Artificial Dehydration on Germination Characteristics of Phoebe bournei Seeds [J]. Scientia Silvae Sinicae, 2025, 61(4): 249-256. |
[2] | Junhong Zhang,Yang Wang,Shengcai Zhou,Xiaolin Wu,Renchao Wu,Qi Yang,Yuting Zhang,Zaikang Tong. Genetic Structure Analysis and Core Germplasm Collection Construction of Phoebe bournei Populations [J]. Scientia Silvae Sinicae, 2024, 60(1): 68-79. |
[3] | Yan Wang,Jinling Feng,Xiaohui Wu,Lanming Huang,Juan Wu,Yu Chen,Zhijian Yang. Effects of Fertilization on Photosynthetic Carbon Fixation of Phoebe bournei Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(5): 40-52. |
[4] | Miao Zhang,Shengcai Zhou,Mengjie Wu,Zaikang Tong,Xiao Han,Junhong Zhang,Longjun Cheng. Identification of the PbWRKY Gene Family and Its Expression Analysis under Deficiency of Phosphorus in Phoebe bournei [J]. Scientia Silvae Sinicae, 2022, 58(2): 133-147. |
[5] | Xiao Wang,Xiaoli Wei,Gaoyin Wu,Shengqun Chen. Effects of Different Nitrogen Forms and Supply on Photosynthetic Characteristics and Growth of Phoebe bournei Seedlings under Elevated CO2 Concentration [J]. Scientia Silvae Sinicae, 2021, 57(4): 173-181. |
[6] | Zhang Yang, Du Lin, Tang Xianfeng, Liu Huanhuan, Zhou Gongke, Chai Guohua. Identification and Expression Pattern Analyses of Populus BAG Genes [J]. Scientia Silvae Sinicae, 2019, 55(1): 138-145. |
[7] | Wang Haibo, Gong Ming, Guo Junyun, Xin Hu, Tang Lizhou, Liu Chao, Gao Yong, Dai Dongqin. Molecular Cloning and Prokaryotic Expression of Orphan Gene Soloist of AP2/ERF Gene Family in Jatropha curcas [J]. Scientia Silvae Sinicae, 2018, 54(9): 60-69. |
[8] | Han Shumei, Li Jun, Lü Ruihua, Wang Xiaohong, Liu Changying, Zhao Aichun, Lu Cheng, Yu Maode. Characteristics, Cloning and Expression of the MLX56 Gene Family in Mulberry [J]. Scientia Silvae Sinicae, 2015, 51(4): 60-70. |
[9] | Zhao Ying;Zhou Zhichun;Jin Guoqing. GCA/SCA of Seedling Growth and Root Parameters in Pinus massoniana and the Phosphorus Environment Influence [J]. Scientia Silvae Sinicae, 2009, 12(6): 27-33. |
[10] | Zhou Zhichun;Xie Yurong;Jin Guoqing;Chen Yue;Song Zhenying. Study on Phosphorus Efficiency of Different Provenances of Pinus massoniana [J]. Scientia Silvae Sinicae, 2005, 41(4): 25-30. |
[11] | Xie Yurong;Zhou Zhichun;Liao Guohua;Jin Guoqing;Chen Yue. Difference of Induced Acid Phosphate Activity Under Low Phosphorus Stress of Pinus massoniana Provenances [J]. Scientia Silvae Sinicae, 2005, 41(3): 58-62. |
[12] | An Xinmin;Zhang Shanglong;Xu Changjie;Tao Jun. Cloning and Characterization of Members of Acid Invertase Gene Family in Citrus [J]. Scientia Silvae Sinicae, 2004, 40(4): 58-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||