Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 174-183.doi: 10.11707/j.1001-7488.LYKX20220595
• Research papers • Previous Articles Next Articles
Yiyuan Zhang1,Yuan Chen1,*,Gaiyun Li1,Yiqiang Wu2
Received:
2022-09-03
Online:
2024-08-25
Published:
2024-09-03
Contact:
Yuan Chen
CLC Number:
Yiyuan Zhang,Yuan Chen,Gaiyun Li,Yiqiang Wu. Modification of Wood Fiber Surface by Aldehyde Groups and Property Evaluation of Self-Bonding Fiberboards[J]. Scientia Silvae Sinicae, 2024, 60(8): 174-183.
Fig.6
Gluing mechanism during hot pressing of dialdehyde wood fibers (a) and photo of dialdehyde wood fibers sellf-bonding board (b) bending properties(c), internal bonding strength(d), and water absorption thickness expansion rate(e) of dialdehyde wood fibers prepared from self-bonding fiberboard at different hot-pressing temperatures"
葛省波. 2020. 竹纤维干法嵌合机理研究. 长沙: 中南林业科技大学. | |
Ge S B. 2020. The mechanism research on dry mosaicism of bamboo fiber. Changsha: Central South University of Forestry & Technology. [in Chinese] | |
耿 绍, 张伟风, 罗浪漫, 等. 双醛改性纤维素纳米纤丝增强木质素水凝胶及其耐温耐盐性能研究. 中国造纸学报, 2022, 37 (1): 29- 35. | |
Geng S, Zhang W F, Luo L M, et al. Study on lignin hydrogel reinforced by dialdehyde-modified cellulose nanofibril and its temperature and salt tolerance. Transactions of China Pulp and Paper, 2022, 37 (1): 29- 35. | |
郭明辉, 关 鑫, 李 坚. 2010. 中国木质林产品的碳储存与碳排放. 中国人口·资源与环境, 20(S2): 19−21. | |
Guo M H, Guan X, Li J. 2010. Carbon storage and carbon emission of wood forest products in China. China Population, Resources and Environment, 20(S2): 19−21. [in Chinese] | |
姬云忠. 2021. 纤维素基活性包装材料的制备及性能研究. 济南: 齐鲁工业大学. | |
Ji Y Z. 2021. Preparation and properties of cellulose based active packaging materials. Jinan: Qilu University of Technology. [in Chinese] | |
金春德. 2002. 无胶人造板制造工艺的研究. 哈尔滨: 东北林业大学. | |
Jin C D. 2002. Study on processes of self-bonding composites. Harbin: Northeast Forestry University. [in Chinese] | |
劳万里, 段新芳, 吕 斌, 等. 碳达峰碳中和目标下木材工业的发展路径分析. 木材科学与技术, 2022, 36 (1): 87- 91. | |
Lao W L, Duan X F, Lü B, et al. Development path of China wood industry under the targets of carbon dioxide emission peaking and carbon neutrality. Chinese Journal of Wood Science and Technology, 2022, 36 (1): 87- 91. | |
王宝玉, 李 荣, 曾锦豪, 等. 高碘酸盐氧化纤维素与双醛纤维素衍生反应及应用研究进展. 合成材料老化与应用, 2020, 49 (4): 127- 130. | |
Wang B Y, Li R, Zeng J H, et al. Research progress in derivative reaction of dialdehyde celluloseand its application. Synthetic Materials Aging and Application, 2020, 49 (4): 127- 130. | |
王琴梅, 廖燕红, 滕 伟, 等. 盐酸羟胺-电位滴定法测定氧化海藻酸钠上的醛基浓度. 分析试验室, 2008, 27 (S1): 83- 86. | |
Wang Q M, Liao Y H, Teng W, et al. Determination of aldehyde group concentration on oxidized sodium alginate by hydroxylamine hydrochloride-potentiometric titration. Chinese Journal of Analysis Laboratory, 2008, 27 (S1): 83- 86. | |
王 雄, 彭文垚, 王 鹏. 双醛纤维素的制备及其对纸张强度的增强. 包装工程, 2021, 42 (23): 8- 14. | |
Wang X, Peng W Y, Wang P. Preparation of dialdehyde cellulose and its enhancement effects on paper strength. Packaging Engineering, 2021, 42 (23): 8- 14. | |
伍艳梅, 吕 斌. 我国人造板产品发展现状及建议. 中国人造板, 2020, 27 (4): 7- 11. | |
Wu Y M, Lü B. Analysis on present development status and future prospect of wood-based panels in China. China Wood-Based Panels, 2020, 27 (4): 7- 11. | |
张 林, 朱 平, 徐江涛, 等. 人发角蛋白液整理氧化棉织物的工艺研究. 纤维素科学与技术, 2015, 23 (3): 36- 42. | |
Zhang L, Zhu P, Xu J T, et al. Research of oxidized cotton fabric modified by human hair keratin solution. Journal of Cellulose Science and Technology, 2015, 23 (3): 36- 42. | |
赵保成, 姜志华, 王素鹏, 等. 木质素无醛胶黏剂在实木复合地板生产中研究与应用. 中国人造板, 2021, 28 (1): 3- 6. | |
Zhao B C, Jiang Z H, Wang S P, et al. Technology and application of lignin based formaldehyde-free adhesive for engineered wood flooring. China Wood-Based Panels, 2021, 28 (1): 3- 6. | |
郑 霞. 2012. 非木材植物无胶碎料板喷蒸热压工艺及胶合机理研究. 长沙: 中南林业科技大学. | |
Zheng X. 2012. Research on steam-injection hot-pressing technology and bonding mechanism of non-wood plant binderless particleboard. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
Abboud M, Bondock S, El-Zahhar A A, et al. Synthesis and characterization of dialdehyde cellulose/amino functionalized MCM-41 core-shell microspheres as a new eco-friendly flame-retardant nanocomposite. Journal of Applied Polymer Science, 2021, 138 (15): 50215.
doi: 10.1002/app.50215 |
|
Chen B, Leiste U H, Fourney W L, et al. Hardened wood as a renewable alternative to steel and plastic. Matter, 2021, 4 (12): 3941- 3952.
doi: 10.1016/j.matt.2021.09.020 |
|
Cui D L, Liu Z H, Yang Y X, et al. Adsorption performance of creatinine on dialdehyde nanofibrillated cellulose derived from potato residues. Biotechnology Progress, 2016, 32 (1): 208- 214.
doi: 10.1002/btpr.2177 |
|
El-Sakhawy, Kamel S, Salama A, et al. Amphiphilic cellulose as stabilizer for oil/water emulsion. Egyptian Journal of Chemistry, 2017, 60 (2): 181- 204.
doi: 10.21608/ejchem.2017.544.1002 |
|
Esen E R, Meier M A R. Sustainable functionalization of 2, 3-dialdehyde cellulose via the passerini three-component reaction. ACS Sustainable Chemistry & Engineering, 2020, 8 (41): 15755- 15760. | |
Gong X Y, Liu T L, Yu S S, et al. The preparation and performance of a novel lignin-based adhesive without formaldehyde. Industrial Crops and Products, 2020, 153 (1): 112593- 112604. | |
Hashim R, Saari N, Sulaiman O, et al. Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk. Materials & Design, 2010, 31 (9): 4251- 4257. | |
Hashim R, Wan Nadhari W N A, Sulaiman O, et al. Properties of binderless particleboard panels manufactured from oil palm biomass. BioResources, 2012, 7 (1): 1352- 1365.
doi: 10.15376/biores.7.1.1352-1365 |
|
Keshk S, Zahhar A A, Al-sehemi A G, et al. 2018. Synthesis and characterization of magnetic nanoparticles/dialdehyde cellulose composite as a flame retardant. Materials Research Express, 6(2): 101−123. | |
Kim U J, Kimura S, Wada M. Highly enhanced adsorption of Congo red onto dialdehyde cellulose-crosslinked cellulose-chitosan foam. Carbohydrate Polymers, 2019, 214, 294- 302.
doi: 10.1016/j.carbpol.2019.03.058 |
|
Kim U J, Kuga S, Wada M, et al. Periodate oxidation of crystalline cellulose. Biomacromolecules, 2000, 1 (3): 488- 492.
doi: 10.1021/bm0000337 |
|
Kurokochi Y, Sato M. Properties of binderless board made from rice straw: the morphological effect of particles. Industrial Crops and Products, 2015, 69, 55- 59.
doi: 10.1016/j.indcrop.2015.01.044 |
|
Lei B, Feng Y H. Sustainable thermoplastic bio-based materials from sisal fibers. Journal of Cleaner Production, 2020a, 265, 121631.
doi: 10.1016/j.jclepro.2020.121631 |
|
Lei Z H, Gao W H, Zeng J S, et al. The mechanism of Cu (II) adsorption onto 2, 3-dialdehyde nano-fibrillated celluloses. Carbohydrate Polymers, 2020b, 230, 115631.
doi: 10.1016/j.carbpol.2019.115631 |
|
Lou J F, Zhang J F, Wang D, et al. Improving the dyeability and anti-wrinkle properties of cotton fabric via oxidized raffinose. Applied Sciences, 2021, 11 (10): 4641- 4654.
doi: 10.3390/app11104641 |
|
Mou K W, Li J J, Wang Y Y, et al. 2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. Journal of Materials Chemistry B, 2017, 5 (38): 7876- 7884.
doi: 10.1039/C7TB01857F |
|
Murigi M K, Madivoli E S , Mathenyu M M, et al. 2014. Comparison of physicochemical characteristics of microcrystalline cellulose from four abundant Kenyan biomasses. IOSR Journal of Polymer and Textile Engineering, 1(2): 53−63. | |
Poletto M, Zattera A J, Forte M M C, et al. Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresource Technology, 2012, 109, 148- 153.
doi: 10.1016/j.biortech.2011.11.122 |
|
Simon J, Tsetsgee O, Iqbal N A, et al. A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy. Carbohydrate Polymers, 2022, 278 (40): 118887- 118895. | |
Sirvio J, Hyvakko U, Liimatainen H, et al. Periodate oxidation of cellulose at elevated temperatures using metal salts as cellulose activators. Carbohydrate Polymers, 2011, 83 (3): 1293- 1297.
doi: 10.1016/j.carbpol.2010.09.036 |
|
Thiangtham S, Runt J, Manuspiya H. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility. Carbohydrate Polymers, 2019, 208, 314- 322.
doi: 10.1016/j.carbpol.2018.12.080 |
|
Tupciauskas R, Irbe I, Janberga A, et al. Moisture and decay resistance and reaction to fire properties of self-binding fibreboard made from steam-exploded grey alder wood. Wood Material Science & Engineering, 2015, 12 (1/5): 63- 71. | |
Usman M A, Naeem M, Saeed M, et al. Catalytic C—O bond cleavage in a β—O—4 lignin model through intermolecular hydrogen transfer. Inorganica Chimica Acta, 2021, 521, 120305.
doi: 10.1016/j.ica.2021.120305 |
|
Varavinit S, Chaokasem N, Shobsngob S. Covalent immobilization of a glucoamylase to bagasse dialdehyde cellulose. World Journal of Microbiology and Biotechnology, 2001, 17 (7): 721- 725.
doi: 10.1023/A:1012984802624 |
|
Wan N A W A, NadhariaNor S I, Mohammed Danish, et al. Mechanical and physical properties of binderless particleboard made from oil palm empty fruit bunch (OPEFB) with addition of natural binder. Materials Today: Proceedings, 2020, 31 (1): 287- 291. | |
Wang J, Zhang W G, Zhuang X W. Bonding mechanism of bamboo particleboards made by laccase treatment. Journal of Renewable Materials, 2021, 9 (3): 557- 568.
doi: 10.32604/jrm.2021.013269 |
|
Yang L, Wang C F, Chen L P, et al. Effect of aldehydes crosslinkers on properties of bacterial cellulose-poly(vinyl alcohol) (BC/PVA) nanocomposite hydrogels. Fibers and Polymers, 2017, 18 (1): 33- 40.
doi: 10.1007/s12221-017-6873-9 |
|
Ye H R, Wang Y, Yu Q H, et al. 2022. Bio-based composites fabricated from wood fibers through self-bonding technology. Chemosphere, 287(Pt 4): 132436−132445. | |
Zhang H, Liu P W, Musa S M, et al. Dialdehyde cellulose as a bio-based robust adhesive for wood bonding. ACS Sustainable Chemistry & Engineering, 2019, 7 (12): 10452- 10459. |
[1] | Xiu Hao,Shunong Li,Chunmei Yang,Wenji Yu,Yanglun Yu. Crack Behavior and Mechanism of Gradient Structure in Bamboo under Grain Splitting and Radial Compression [J]. Scientia Silvae Sinicae, 2023, 59(11): 118-123. |
[2] | Xiaowen Zhang,Qingjun Yu,Guisheng Luo,Xi Jia,Danni Wu,Zhongkui Jia. Site Classification and Site Quality Evaluation of Pinus tabulaeformis Plantation for Construction Timber in Pingquan, Hebei Province [J]. Scientia Silvae Sinicae, 2021, 57(9): 1-12. |
[3] | Ru Jia,Haiyan Sun,Yurong Wang,Rui Wang,Rongjun Zhao,Haiqing Ren. Relativity of Microstructures and Mechanical Properties of Juvenile Woods of 10-Year-Old New Chinese Fir Clones 'Yang 020' and 'Yang 061' [J]. Scientia Silvae Sinicae, 2021, 57(5): 165-175. |
[4] | Yanhe Liu,Jianbo Zhou,Wansi Fu,Bin Zhang,Feihu Chang,Wen He. Preparation and Mechanical Property Evaluation of Glued Laminated Bamboo Based on High Frequency Heating [J]. Scientia Silvae Sinicae, 2020, 56(8): 131-140. |
[5] | Feibin Wang,Xinmeng Wang,Shuming Yang,Guichao Jiang,Zeli Que,Haibin Zhou. Effect of Different Laminate Thickness on Mechanical Properties of Cross-Laminated Timber Made from Chinese Fir [J]. Scientia Silvae Sinicae, 2020, 56(11): 168-175. |
[6] | An Shengnan, Ma Xiaojun, Zhu Lizhi. Preparation and Characterization of the P34HB Composite Reinforced by Wood Flour [J]. Scientia Silvae Sinicae, 2019, 55(3): 125-133. |
[7] | Sun Xiaoting, Chang Liang, Tang Qiheng, Ren Yiping, Guo Wenjing. Effects of Isothermal Crystallization on the Properties of Wood Fiber/PLA Composites [J]. Scientia Silvae Sinicae, 2018, 54(3): 97-107. |
[8] | Zhou Xianwu, Gao Yulei, Su Minglei, Zhao Rongjun, Lü Jianxiong. Progress of Research on Improvement of Genetic Engineering to Wood Properties [J]. Scientia Silvae Sinicae, 2018, 54(3): 152-160. |
[9] | Liu Cangwei, Su Minglei, Wang Siqun, Wang Xinzhou, Zhao Rongjun, Ren Haiqing, Wang Yurong. Cell Wall Mechanical Properties and Microfibril Angle of Phyllostachys edulis in Different Growth Period [J]. Scientia Silvae Sinicae, 2018, 54(1): 174-180. |
[10] | Zhang Junpei, Wang Zi, Zhou Xianwu, Zhao Rongjun, Xu Huige, Jia Zhiming, Pei Dong. Wood Physical and Mechanical Properties of American Black Walnut of Different Strains [J]. Scientia Silvae Sinicae, 2016, 52(6): 108-114. |
[11] | Wang Haigang, Zhang Jingfa, Wang Weihong, Wang Qingwen. Research of Fiber Reinforced Wood-Plastic Composites: a Review [J]. Scientia Silvae Sinicae, 2016, 52(6): 130-139. |
[12] | Liu Fangyan, Guo Minghui, Zhang Fan, Liu Yi, Zhang Yongming. Influence of Sugar Content of Ammonium Lignosulfonate on the Properties of Binderless Medium Density Fibreboard [J]. Scientia Silvae Sinicae, 2014, 50(6): 175-180. |
[13] | Ma Wenjun, Zhang Shougong, Wang Junhui, Zhai Wenji, Cui Yongzhi, Wang Qiuxia. Timber Physical and Mechanical Properties of New Catalpa bungei Clones [J]. Scientia Silvae Sinicae, 2013, 49(9): 126-134. |
[14] | Zhang Yamei;Yu Wenji. Effect of Thermal Treatment on the Properties of Bamboo-Based Fiber Composites [J]. , 2013, 49(5): 160-168. |
[15] | Zhao Rongjun;Xing Xinting;Jianxiong Zhang. Estimation of Wood Mechanical Properties of Eucalyptus pellita by Near Infrared Spectroscopy [J]. Scientia Silvae Sinicae, 2012, 48(6): 106-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||