Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (12): 58-71.doi: 10.11707/j.1001-7488.LYKX20230648
Previous Articles Next Articles
Fanbo Zhou,Yumin Liu,Yamin Liu*,Chongwen Dai,Qi Gao,Yulin Zhang,Yating Zhu
Received:
2023-12-29
Online:
2024-12-25
Published:
2025-01-02
Contact:
Yamin Liu
CLC Number:
Fanbo Zhou,Yumin Liu,Yamin Liu,Chongwen Dai,Qi Gao,Yulin Zhang,Yating Zhu. Alleviation Effect and Physiological Mechanism of Exogenous Methyl Jasmonate on Drought Damage of Toona ciliata Seedlings[J]. Scientia Silvae Sinicae, 2024, 60(12): 58-71.
Fig.2
Effects of exogenous MeJA on osmotic regulatory substances of T. ciliata leaves E:Morphological changes of mesophyll cells.×:Average;◆:Outliers;the top and bottom edges of the box represent the upper quartile and the lower quartile,respectively, the lines inside the box represent the median,and the lines outside the box represent the maximum and minimum values,respectively.The following picture is the same."
Fig.4
Effects of exogenous MeJA on the content and ratio of non-enzymatic antioxidants in leaves of T. ciliata ×:Average;◆:Outliers;the top and bottom edges of the box represent the upper quartile and the lower quartile,respectively, the lines inside the box represent the median,and the lines outside the box represent the maximum and minimum values,respectively.The following picture is the same."
Fig.5
Effects of exogenous MeJA on active oxygen accumulation and MDA content in T. ciliata leaves ×:Average;◆:Outliers;the top and bottom edges of the box represent the upper quartile and the lower quartile,respectively, the lines inside the box represent the median,and the lines outside the box represent the maximum and minimum values,respectively.The following picture is the same."
Fig.6
Effects of exogenous MeJA on water and gas exchange parameters of T. ciliata leaves G:Leaf stomatal opening changes.×:Average;◆:Outliers;the top and bottom edges of the box represent the upper quartile and the lower quartile,respectively; the lines inside the box represent the median,and the lines outside the box represent the maximum and minimum values,respectively.The following picture is the same."
Fig.8
Effects of exogenous MeJA on net photosynthetic rate and leaves color of T. ciliata B:Leaf color changes.×:Average;◆:Outliers;the top and bottom edges of the box represent the upper quartile and the lower quartile,respectivel, the lines inside the box represent the median,and the lines outside the box represent the maximum and minimum values,respectively.The following picture is the same."
宾金华, 潘瑞炽. 甲基茉莉酸酯对花生种子萌发和贮藏物质降解的影响. 热带亚热带植物学报, 1998, 6 (3): 239- 244. | |
Bin J H, Pan R C. Effects of methyl jasmonate on the germination and degradation of reserve substances in peanut (Arachis hypogaea L. ) seeds. Journal of Tropical and Subtropical Botany, 1998, 6 (3): 239- 244. | |
陈彩霞, 王瑞辉, 吴际友, 等. 持续干旱条件下红椿无性系幼苗的生理响应. 中南林业科技大学学报, 2013, 33 (9): 46- 49. | |
Chen C X, Wang R H, Wu J Y, et al. Physiological responses of Toona ciliata seedlings under continuous drought conditions. Journal of Central South University of Forestry & Technology, 2013, 33 (9): 46- 49. | |
陈汝民, 李娘辉, 潘瑞炽, 等. 茉莉酸甲酯对水稻光合速率及其同化产物运输的调节作用. 植物学报, 1993, 35 (8): 600- 605. | |
Chen R M, Li N H, Pan R C, et al. The role of methyl jamonate(ja-me) on its regulation of the photosynthetic rate and the translocation of assimilates in rice. Journal of Integrative Plant Biology, 1993, 35 (8): 600- 605. | |
陈燕琼, 沈 瑒, 范佳露, 等. 茉莉酸甲酯对干旱及复水下落叶冬青苗叶片抗氧化水平的影响. 南京林业大学学报(自然科学版), 2018, 42 (6): 35- 43. | |
Chen Y Q, Shen Y, Fan J L, et al. The effects of methyl jasmonic acid on leaf antioxidative capacity of Ilex verticillata L. seedlings under drought and re-watering. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42 (6): 35- 43. | |
董桃杏, 蔡昆争, 张景欣, 等. 茉莉酸甲酯(MeJA)对水稻幼苗的抗旱生理效应. 生态环境, 2007, 16 (4): 1261- 1265. | |
Dong T X, Cai K Z, Zhang J X, et al. The physiological roles of methyl jasmonate (MeJA) in drought resistance of rice seedlings. Ecology and Environment, 2007, 16 (4): 1261- 1265. | |
郭 丽, 梁俊林, 赵永辉, 等. 四川省3种乡土树种幼苗对干旱胁迫的光合生理响应. 四川农业大学学报, 2017, 35 (4): 516- 522. | |
Guo L, Liang J L, Zhao Y H, et al. Photosynthetic physiological response to drought stress of three native tree species seedlings in Sichuan. Journal of Sichuan Agricultural University, 2017, 35 (4): 516- 522. | |
郭泉水, 谭德远, 刘玉军, 等. 梭梭对干旱的适应及抗旱机理研究进展. 林业科学研究, 2004, 17 (6): 796- 803. | |
Guo Q S, Tan D Y, Liu Y J, et al. Advance in studies of Haloxylon Bunge’s mechanism of adapation and resistance to drought. Forest Research, 2004, 17 (6): 796- 803. | |
何天友, 于增金, 沈少炎, 等. 花吊丝竹对干旱胁迫的光合和生理响应. 森林与环境学报, 2020, 40 (1): 68- 75. | |
He T Y, Yu Z J, Shen S Y, et al. Photosynthetic and physiological responses of Dendrocalamus minor var. amoenus to drought stress. Journal of Forest and Environment, 2020, 40 (1): 68- 75. | |
忽雪琦, 李东阳, 严加坤, 等. 干旱胁迫下外源茉莉酸甲酯对玉米幼苗根系吸水的影响. 植物生理学报, 2018, 54 (6): 991- 998. | |
Hu X Q, Li D Y, Yan J K, et al. Effects of exogenous methyl jasmonate on water absorption capacity of maize (Zea mays L. ) seedling root under drought stress. Plant Physiology Journal, 2018, 54 (6): 991- 998. | |
姜兰芳, 李晓丽, 曹 勇, 等. 基于主成分分析的面筋聚集仪预测小麦品质. 食品科学, 2022, 43 (14): 85- 92. | |
Jiang L F, Li X L, Cao Y, et al. Prediction of wheat quality using GlutoPeak combined with principal component analysis. Food Science, 2022, 43 (14): 85- 92. | |
金思雨, 彭祚登, 张舒乐. 不同程度干旱胁迫和复水处理对刺槐苗木生理指标的影响. 东北林业大学学报, 2024, 52 (10): 27- 39. | |
Jin S Y, Peng Z D, Zhang S L. The impact of varying degrees of drought stress and rehydration treatment on the physiological indicators of Robinia pseudoacacia seedlings. Journal of Northeast Forestry University, 2024, 52 (10): 27- 39. | |
金微微, 王 炎, 张会慧, 等. 茉莉酸甲酯对干旱及复水条件下烤烟幼苗叶绿素荧光特性的影响. 应用生态学报, 2011, 22 (12): 3157- 3162. | |
Jin W W, Wang Y, Zhang H H, et al. Effects of foliar spraying methyl jasmonate on leaf chlorophyll fluorescence characteristics of flue-cured tobacco seedlings under drought and re-watering. Chinese Journal of Applied Ecology, 2011, 22 (12): 3157- 3162. | |
李 培, 阙青敏, 吴林瑛, 等. 红椿不同种源的苗期生长节律研究. 华南农业大学学报, 2017, 38 (1): 96- 102. | |
Li P, Que Q M, Wu L Y, et al. Growth rhythms of Toona ciliata seedlings from different provenances. Journal of South China Agricultural University, 2017, 38 (1): 96- 102. | |
李 泽, 谭晓风, 卢 锟, 等. 干旱胁迫对两种油桐幼苗生长、气体交换及叶绿素荧光参数的影响. 生态学报, 2017, 37 (5): 1515- 1524. | |
Li Z, Tan X F, Lu K, et al. Influence of drought stress on the growth, leaf gas exchange, and chlorophyll fluorescence in two varieties of Tung tree seedlings. Acta Ecologica Sinica, 2017, 37 (5): 1515- 1524. | |
刘 球. 2018. 外源多胺对红椿抗旱的调节响应研究. 长沙: 中南林业科技大学. | |
Liu Q. 2018. Study on the regulation responses of exogenous polyamines on drought resistance in Toona ciliata seedlings. Changsha: Central South University of Forestry & Technology. | |
刘晓英, 罗远培, 石元春. 水分胁迫后复水对冬小麦叶面积的激发作用. 中国农业科学, 2001, 34 (4): 422- 428. | |
Liu X Y, Luo Y P, Shi Y C. The stimulating effects of rewatering in subjecting to water stress on leaf area of winter wheat. Scientia Agricultura Sinica, 2001, 34 (4): 422- 428. | |
马 超, 冯雅岚, 张 均, 等. 外源茉莉酸甲酯对干旱胁迫下小麦花后内源激素含量及产量形成的影响. 植物生理学报, 2017, 53 (6): 1051- 1058. | |
Ma C, Feng Y L, Zhang J, et al. Effects of exogenous methyl jasmonate on endogenous hormones and yield formation in wheat after anthesis under drought stress. Plant Physiology Journal, 2017, 53 (6): 1051- 1058. | |
马丽珲, 周婷婷, 徐 刚, 等. 重庆市干旱时空分布规律研究. 西南大学学报(自然科学版), 2019, 41 (8): 82- 91. | |
Ma L H, Zhou T T, Xu G, et al. Research of the temporal and spatial distribution of drought in Chongqing. Journal of Southwest University (Natural Science Edition), 2019, 41 (8): 82- 91. | |
孟 蕊, 刘 晔, 赵 爽, 等. 砧穗互作对菊花嫁接苗耐盐性的影响. 中国农业科学, 2021, 54 (3): 629- 642. | |
Meng R, Liu Y, Zhao S, et al. Effects of rootstock and scion interaction on salt tolerance of grafted Chrysanthemum seedlings. Scientia Agricultura Sinica, 2021, 54 (3): 629- 642. | |
潘远智, 江明艳. 遮荫对盆栽一品红光合特性及生长的影响. 园艺学报, 2006, 33 (1): 95- 100. | |
Pan Y Z, Jiang M Y. Effects of shade on the photosynthetic characteristics and growth of Poinsettia. Acta Horticulturae Sinica, 2006, 33 (1): 95- 100. | |
孙军利, 赵宝龙, 郁松林. SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响. 核农学报, 2015, 29 (4): 799- 804. | |
Sun J L, Zhao B L, Yu S L. Effects of exogenous salicylic acid ( SA) on ascorbate glutathione cycle ( AsA-GSH) circulation metabolism in grape seedlings under high temperature stress. Journal of Nuclear Agricultural Sciences, 2015, 29 (4): 799- 804. | |
孙明升, 胡 颖, 陈 旋, 等. 外源调节物质对干旱胁迫下格木幼苗生理特性的影响. 林业科学, 2020, 56 (10): 165- 172. | |
Sun M S, Hu Y, Chen X, et al. Effects of exogenous regulating substances on physiological characteristics of Erythrophleum fordii seedlings under drought stress. Scientia Silvae Sinicae, 2020, 56 (10): 165- 172. | |
孙晓梵, 张一龙, 李培英, 等. 2022. 喷施茉莉酸甲酯对干旱胁迫下狗牙根生理特性的影响. 草地学报, 30(10): 2811−2818. | |
(Sun X F, Zhang Y L, Li P Y, et al. 2022. Physiological response of external spraying methyl jasmonate to the drought sress of Bermudagrass seedlings. Acta Agrestia Sinica, 30(10): 2811−2818. [in Chinese]) | |
王三根. 2017. 植物生理学实验教程. 北京: 科学出版社. | |
Wang S G. 2017. Tutorial of plant physiology experiment. Beijing: Science Press. [in Chinese] | |
魏祯祯, 严宁宁, 牛童非, 等. 茉莉酸甲酯处理的油用牡丹干旱下的光合及生理特性. 湖南农业大学学报(自然科学版), 2022, 48 (2): 175- 180. | |
Wei Z Z, Yan N N, Niu T F, et al. Photosynthetic and physiological characteristics of oil peony treated with methyl jasmonate under drought. Journal of Hunan Agricultural University ( Natural Science Edition ), 2022, 48 (2): 175- 180. | |
吴际友, 李 艳, 李志辉, 等. 红椿半同胞家系生长与早期选择. 中南林业科技大学学报, 2016, 36 (4): 1- 4. | |
Wu J Y, Li Y, Li Z H, et al. Growth and early selection of half-sib families of Toona ciliata. Journal of Central South University of Forestry & Technology, 2016, 36 (4): 1- 4. | |
吴建慧, 范卫芳, 牛 喆, 等. 外源茉莉酸甲酯对干旱胁迫下狭叶黄芩光合和生理特性的影响. 植物研究, 2020, 40 (3): 360- 367.
doi: 10.7525/j.issn.1673-5102.2020.03.006 |
|
Wu J H, Fan W F, Niu Z, et al. Effects of exogenous methyl jasmonate on photosynthesis and physiological characteristics of Scutellaria regeliana under drought stress. Bulletin of Botanical Research, 2020, 40 (3): 360- 367.
doi: 10.7525/j.issn.1673-5102.2020.03.006 |
|
徐 伟, 严善春. 茉莉酸在植物诱导防御中的作用. 生态学报, 2005, 25 (8): 2074- 2082. | |
Xu W, Yan S C. The function of Jasmonic acid in induced plant defence. Acta Ecologica Sinica, 2005, 25 (8): 2074- 2082. | |
杨 艺, 常 丹, 王 艳, 等. 茉莉酸与茉莉酸甲酯预处理对干旱胁迫下棉花种子萌发和种苗生理特性的影响. 西北植物学报, 2015, 35 (2): 302- 308. | |
Yang Y, Chang D, Wang Y, et al. Effects of JA and MeJA pretreatment on seed germination and seedling physiological characteristics of Gossypium hirsutum under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35 (2): 302- 308. | |
杨 艺, 常 丹, 王 艳, 等. 茉莉酸甲酯对棉花抗旱效果的影响. 西北农业学报, 2016, 25 (9): 1333- 1341. | |
Yang Y, Chang D, Wang Y, et al. Effect of methyl jasmonate(MeJA)on enhancing drought resistance of cotton. Acta Agriculturae Boreali-occidentalis Sinica, 2016, 25 (9): 1333- 1341. | |
郁 敏, 任亚萍, 米银法, 等. 根际低氧对不同抗性牡丹植株AsA-GSH循环代谢的影响. 北方园艺, 2016, (16): 69- 75. | |
Yu M, Ren Y P, Mi Y F, et al. Effect of root zone hypoxia stress on AsA-GSH between two peony varieties. Northern Horticulture, 2016, (16): 69- 75. | |
张文英, 智 慧, 柳斌辉, 等. 谷子全生育期抗旱性鉴定及抗旱指标筛选. 植物遗传资源学报, 2010, 11 (5): 560- 565. | |
Zhang W Y, Zhi H, Liu B H, et al. Indexes screening for drought resistance test of Foxtail millet. Journal of Plant Genetic Resources, 2010, 11 (5): 560- 565. | |
章亚彦, 林 荔, 苏必桔. 碘化钾碘蓝分光光度法测定微量过氧化氢. 分析试验室, 2001, 20 (4): 41- 42.
doi: 10.3969/j.issn.1000-0720.2001.04.014 |
|
Zhang Y Y, Lin L, Su B J. Determination of trace H2O2 by KI iodine blue spectrophotometry. Analytical Laboratory, 2001, 20 (4): 41- 42.
doi: 10.3969/j.issn.1000-0720.2001.04.014 |
|
中国树木志编委会. 1981. 中国主要树种造林技术. 北京: 中国林业出版社. | |
China Tree Record Editorial Committee. 1981. Afforestation technology of main tree species in China. Beijing: China Forestry Publishing House. [in Chinese] | |
邹长明, 王允青, 刘 英, 等. 四种豆科作物的光合生理和生长发育对弱光的响应. 植物生态学报, 2015, 39 (9): 909- 916.
doi: 10.17521/cjpe.2015.0087 |
|
Zou C M, Wang Y Q, Liu Y, et al. Responses of photosynthesis and growth to weak light regime in four legume species. Chinese Journal of Plant Ecology, 2015, 39 (9): 909- 916.
doi: 10.17521/cjpe.2015.0087 |
|
Bashri G, Prasad S M. Exogenous IAA differentially affects growth, oxidative stress and antioxidants system in Cd stressed Trigonella foenum-graecum L. seedlings: Toxicity alleviation by up-regulation of ascorbate-glutathione cycle. Ecotoxicology and Environmental Safety, 2016, 132, 329- 338.
doi: 10.1016/j.ecoenv.2016.06.015 |
|
Caretto S, Quarta A, Durante M, et al. Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. Plant Biology, 2011, 13 (1): 51- 58.
doi: 10.1111/j.1438-8677.2009.00306.x |
|
Cornic G. Drought stress inhibits photosynthesis by decreasing stomatal aperture–not by affecting ATP synthesis. Trends in Plant Science, 2000, 5 (5): 187- 188.
doi: 10.1016/S1360-1385(00)01625-3 |
|
Đurić M, Subotić A, Prokić L, et al. Alterations in physiological, biochemical, and molecular responses of Impatiens walleriana to drought by methyl jasmonate foliar application. Genes, 2023, 14 (5): 1072.
doi: 10.3390/genes14051072 |
|
Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 2009, 29 (1): 185- 212.
doi: 10.1051/agro:2008021 |
|
Filella I, Peñuelas J, Llusià J. Dynamics of the enhanced emissions of monoterpenes and methyl salicylate, and decreased uptake of formaldehyde, by Quercus ilex leaves after application of jasmonic acid. New Phytologist, 2006, 169 (1): 135- 144.
doi: 10.1111/j.1469-8137.2005.01570.x |
|
Ho T T, Murthy H N, Park S Y. Methyl jasmonate induced oxidative stress and accumulation of secondary metabolites in plant cell and organ cultures. International Journal of Molecular Sciences, 2020, 21 (3): 716.
doi: 10.3390/ijms21030716 |
|
Huang J P, Yu H P, Guan X D, et al. Accelerated dryland expansion under climate change. Nature Climate Change, 2016, 6, 166- 171.
doi: 10.1038/nclimate2837 |
|
Lakehal A, Bellini C. Control of adventitious root formation: insights into synergistic and antagonistic hormonal interactions. Physiologia Plantarum, 2019, 165 (1): 90- 100.
doi: 10.1111/ppl.12823 |
|
Law M Y, Charles S A, Halliwell B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat. Biochemical Journal, 1983, 210 (3): 899- 903.
doi: 10.1042/bj2100899 |
|
Lei G J, Sun L, Sun Y, et al. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. Journal of Integrative Plant Biology, 2020, 62 (2): 218- 227.
doi: 10.1111/jipb.12801 |
|
Li L T, Guo B L, Feng C C, et al. Growth, physiological, and temperature characteristics in Chinese cabbage pakchoi as affected by Cd- stressed conditions and identifying its main controlling factors using PLS model. BMC Plant Biology, 2022, 22 (1): 571.
doi: 10.1186/s12870-022-03966-2 |
|
Liang G T, Bu J W, Zhang S Y, et al. Effects of drought stress on the photosynthetic physiological parameters of Populus × euramericana “Neva”. Journal of Forestry Research, 2019, 30 (2): 409- 416.
doi: 10.1007/s11676-018-0667-9 |
|
Lin R P, Zhou T J, Qian Y. Evaluation of global monsoon precipitation changes based on five reanalysis datasets. Journal of Climate, 2014, 27 (3): 1271- 1289.
doi: 10.1175/JCLI-D-13-00215.1 |
|
Mitchell P J, O’Grady A P, Tissue D T, et al. Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytologist, 2013, 197 (3): 862- 872.
doi: 10.1111/nph.12064 |
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2021, 172 (2): 1321- 1335.
doi: 10.1111/ppl.13297 |
|
Per T S, Khan N A, Masood A, et al. Methyl jasmonate alleviates cadmium-induced photosynthetic damages through increased S-assimilation and glutathione production in mustard. Frontiers in Plant Science, 2016, 7, 1933. | |
Riemann M, Dhakarey R, Hazman M, et al. Exploring jasmonates in the hormonal network of drought and salinity responses. Frontiers in Plant Science, 2015, 6, 1077. | |
Sasaki-Sekimoto Y, Taki N, Obayashi T, et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. The Plant Journal, 2005, 44 (4): 653- 668.
doi: 10.1111/j.1365-313X.2005.02560.x |
|
Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years. Nature, 2012, 491, 435- 438.
doi: 10.1038/nature11575 |
|
Su J J, Gou X H, HilleRisLambers J, et al. Increasing climate sensitivity of subtropical conifers along an aridity gradient. Forest Ecology and Management, 2021, 482, 118841.
doi: 10.1016/j.foreco.2020.118841 |
|
Tayyab N, Naz R, Yasmin H, et al. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS ONE, 2020, 15 (5): e0232269.
doi: 10.1371/journal.pone.0232269 |
|
Trenberth K E. Changes in precipitation with climate change. Climate Research, 2011, 47 (1): 123- 138.
doi: 10.3354/cr00953 |
|
Wolucka B A, Goossens A, Inzé D. Methyl jasmonate stimulates the de novo biosynthesis of vitamin C in plant cell suspensions. Journal of Experimental Botany, 2005, 56 (419): 2527- 2538.
doi: 10.1093/jxb/eri246 |
|
Yan J K, Li H P, Li Y, et al. Abscisic acid synthesis and root water uptake contribute to exogenous methyl jasmonate-induced improved tomato drought resistance. Plant Biotechnology Reports, 2022, 16 (2): 183- 193.
doi: 10.1007/s11816-022-00753-1 |
|
Zaid A, Mohammad F. Methyl jasmonate and nitrogen interact to alleviate cadmium stress in Mentha arvensis by regulating physio-biochemical damages and ROS detoxification. Journal of Plant Growth Regulation, 2018, 37 (4): 1331- 1348.
doi: 10.1007/s00344-018-9854-3 |
[1] | Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85. |
[2] | Youxin Fang,Banghua Cao,Longmei Guo,Peili Mao,Yuanxiang Pang,Jinhao Zhang,Zhiheng Wang,Pengfei Li. Mitigating Effect of Fulvic Acid Potassium on the Growth of Sabina chinensis under Different Chlorine Salt Stress [J]. Scientia Silvae Sinicae, 2024, 60(4): 99-108. |
[3] | Tongfei Niu,Xian Xue,Lili Guo,Min Yu,Chenjie Zhang,Xinao Xu,Ruiya Li,Xiaogai Hou. Effects of Exogenous Methyl Jasmonate on Volatile Components and Content of Paeonia suffruticosa ‘Luoyanghong’ in Greenhouse [J]. Scientia Silvae Sinicae, 2023, 59(5): 53-60. |
[4] | Xin Cheng,Chunze Wu,Qingyu Wei,Wei Li,Xing Wei. Growth and Physiological Responses of Fraxinus mandshurica Seedlings Inoculated with Arbuscular Mycorrhizal Fungi to Drought Stress [J]. Scientia Silvae Sinicae, 2023, 59(2): 58-66. |
[5] | Ren You,Xiangwen Deng,Yanting Hu,Shuai Ouyang,Liang Chen,Wenhua Xiang. Progress on Physiological and Ecological Responses of Trees to Drought Stress and Rewatering [J]. Scientia Silvae Sinicae, 2023, 59(11): 124-136. |
[6] | Yali Ma,Sujuan Guo,Yining Liao,Fangfang Wang. Effects of Fruit Loads in Different Canopy Layers on Photosynthetic Characteristics of Leaves and Fruit Quality of Chestnut Trees [J]. Scientia Silvae Sinicae, 2022, 58(9): 90-97. |
[7] | Qingzhi Lin,Xiangyuan Zhu,Peili Mao,Lin Zhu,Longmei Guo,Zexiu Li,Banghua Cao,Yingdong Hao,Haitao Tan,Pizheng Hong,Xiaojun Lu. Effects of NaCl and PEG Stresses on Germination and Seedling Growth of Robinia pseudoacacia Seeds with Different Sizes [J]. Scientia Silvae Sinicae, 2022, 58(2): 100-112. |
[8] | Junguang Yao,Ya Geng,Yijing Liu,Yi An,Lichao Huang,Wei Zeng,Mengzhu Lu. Effects of S-Adenosylmethionine Decarboxylase Gene on Drought Tolerance of Populus alba × P. glandulosa '84K' [J]. Scientia Silvae Sinicae, 2022, 58(2): 125-132. |
[9] | Chang Meng,Yang Peng,Yang Zhao,Xiurong Wang,Feng Xiao. Morphological Structure and Photosynthetic Characteristics of Jatropha nigroviensrugosus cv. Yang and Jatropha curcas Seedlings with Different Leaf Types [J]. Scientia Silvae Sinicae, 2022, 58(12): 32-41. |
[10] | Mengjiao Zhang,Shuaiying Shi,Zheng Liu,Xueling Zhu,Kun Fan,Guoan Shi. Effects of Different Thinning Intensity on Growth, Grain Yield, and Quality of Tree Penoy'Fengdan' [J]. Scientia Silvae Sinicae, 2022, 58(1): 162-174. |
[11] | Xuan Chen,Ying Hu,Mingsheng Sun,Jie Jia,Zhangqi Yang. Effects of Exogenous Regulating Substances on Physiological Characteristics of Erythrophleum fordii Seedlings Under Lead Stress [J]. Scientia Silvae Sinicae, 2021, 57(2): 39-48. |
[12] | Ruijing Xu,Xuan Hu,Guanglu Liu,Wen Guo,Changqiang Liang,Xianghe Kong. Differences of Leaf Functional Traits Between Two Climbing Bamboo Species in Tropical Lowland Rainforest of Hainan Island [J]. Scientia Silvae Sinicae, 2021, 57(12): 155-166. |
[13] | Mingsheng Sun,Ying Hu,Xuan Chen,Qunfeng Luo,Zhangqi Yang. Effects of Exogenous Regulating Substances on Physiological Characteristics of Erythrophleum fordii Seedlings under Drought Stress [J]. Scientia Silvae Sinicae, 2020, 56(10): 165-172. |
[14] | Tao Chenyue, Shao Shanlu, Shi Wenhui, Lin Lin, Tang Yilei, Ying Yeqing. Effects of Nitrogen Deposition on Biomass and Protective Enzyme Activities of Phyllostachys edulis Seedlings under Drought Stress [J]. Scientia Silvae Sinicae, 2019, 55(9): 31-40. |
[15] | Liu Chunyang, Shi Tian, Shi Guo, Yang Linfei, Fan Xuefeng, Gao Shuangcheng, Zhang Gaina. Effects of Different Transplanting Periods on Growth of Tree Peony ‘Fengdan’ Seedlings and the Comprehensive Evaluation [J]. Scientia Silvae Sinicae, 2019, 55(8): 54-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||