Scientia Silvae Sinicae ›› 2022, Vol. 58 ›› Issue (1): 52-61.doi: 10.11707/j.1001-7488.20220106
Previous Articles Next Articles
Weixi Zhang1,Yanbo Wang1,2,Changjun Ding1,Wenxu Zhu1,3,Xiaohua Su1,*
Received:2021-01-13
Online:2022-01-25
Published:2022-03-08
Contact:
Xiaohua Su
CLC Number:
Weixi Zhang,Yanbo Wang,Changjun Ding,Wenxu Zhu,Xiaohua Su. Detection of Horizontal Transfer of the Exogenous Gene in Adult Trees of Transgenic Populus alba × P. berolinensis in a Field Trial and Successive Years of Monitoring of Soil Microorganism[J]. Scientia Silvae Sinicae, 2022, 58(1): 52-61.
Fig.1
PCR detection of exogenous gene JERF 36 A: PCR detection of exogenous gene JERF 36 (1: Non-transgenic control 9#; 2: Understory weed; 3: Total DNA in soil; 4: Seedling leaves of roadside poplar beside the test field; 5: Kanamycin-resistant strain 1; 6: Kanamycin-resistant strain 2; 7: Transgenic poplar ABJ01; CK+: Plasmid positive control; CK-: Deionized water negative control); B: PCR detection of 16S rRNA(M: DNA marker; H: Deionized water negative control; 1: Total DNA in soil 1; 2: Total DNA in soil 2; 3: Kanamycin-resistant strain 1; 4: Kanamycin-resistant strain 2)."
Fig.2
Total number of microorganisms of 9-11 year-old(2015-2017) poplar test field and the temperature and raining days in different months 9#: Non-transgenic plants; ABJ01: Transgenic plants. The same below. Different lowercase letters indicate significant differences in the number of microorganisms in different months at the 0.05 level; "*" means significant differences in the number of microorganisms in different years at the 0.05 level."
Fig.3
Total numbers of bacteria, actinomycetes, and fungi in soil of 9-11 years old (2015—2017) poplar test field A: Total number of soil microorganisms in 9-year-old poplar plantation from May to August; B: Total number of soil microorganisms in 10-year-old poplar plantation from May to October; C: Total number of soil microorganisms in 11-year-old poplar plantation from May to October. Different lowercase letters indicate significant differences in the number of microorganisms in different months at the 0.05 level."
| 陈晓雯, 林胜, 尤民生, 等. 转基因水稻对土壤微生物群落结构及功能的影响. 生物安全学报, 2011, 20 (2): 151- 159. | |
| Chen X W , Lin S , You M S , et al. Effects of transgenic rice on the structure and function of soil microbial communities. Journal of Biosafety, 2011, 20 (2): 151- 159. | |
|
侯英杰, 苏晓华, 焦如珍, 等. 转基因银腺杂种杨对土壤微生物的影响. 林业科学, 2009, 45 (5): 148- 152.
doi: 10.3321/j.issn:1001-7488.2009.05.023 |
|
|
Hou Y J , Su X H , Jiao R Z , et al. Effects of transgenic Populus alba×P. glandulosa on soil microorganism. Scientia Silvae Sinicae, 2009, 45 (5): 148- 152.
doi: 10.3321/j.issn:1001-7488.2009.05.023 |
|
|
胡建军, 张蕴哲, 卢孟柱, 等. 欧洲黑杨转基因稳定性及对土壤微生物的影响. 林业科学, 2004, 40 (5): 105- 109.
doi: 10.3321/j.issn:1001-7488.2004.05.017 |
|
|
Hu J J , Zhang Y Z , Lu M Z , et al. Transgene stability of transgenic Populus nigra and its effects on soil microorganism. Scientia Silvae Sinicae, 2004, 40 (5): 105- 109.
doi: 10.3321/j.issn:1001-7488.2004.05.017 |
|
| 康向阳. 林木遗传育种研究进展. 南京林业大学学报(自然科学版), 2020, 44 (3): 1- 10. | |
| Kang X Y . Research progress of forest genetics and tree breeding. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44 (3): 1- 10. | |
| 李霞, 薛泉宏, 樊军锋, 等. 一年生转Bt基因欧洲黑杨对土壤微生物的影响. 西北林学院学报, 2011, 26 (4): 123- 127. | |
| Li X , Xue Q H , Fan J F , et al. Effects of one-year-old Bt transgenic Populus nigra on soil microorganism. Journal of Northwest Forestry University, 2011, 26 (4): 123- 127. | |
|
吕威, 卢楠, 侯荣轩, 等. 12年生转基因毛白杨外源基因转移及其对土壤微生物的影响. 东北林业大学学报, 2018, 46 (9): 1- 6.
doi: 10.3969/j.issn.1000-5382.2018.09.001 |
|
|
Lü W , Lu N , Hou R X , et al. Exogenous gene transfer of 12 a transgenic Populus[(Populus tomentosa × P. bolleana) × P. tomentosa] and its effect on soil microbial quantity. Journal of Northeast Forestry University, 2018, 46 (9): 1- 6.
doi: 10.3969/j.issn.1000-5382.2018.09.001 |
|
| 吕威, 孙宇涵, 张华新, 等. 转基因三倍体毛白杨花粉活力及枯落物外源基因检测. 北京林业大学学报, 2019, 41 (7): 91- 100. | |
| Lü W , Sun Y H , Zhang H X , et al. Pollen vigor and detection of exogenous genes of litter for transgenic triploid Populus tomentosa. Journal of Beijing Forestry University, 2019, 41 (7): 91- 100. | |
| 吕秀华. 转基因银中杨ABJ系列对土壤微生物类群的影响. 基因组学与应用生物学, 2017, 36 (5): 316- 321. | |
| Lü X H . The impact of transgenic poplar (ABJ series) on soil microorganism group. Genomics and Applied Biology, 2017, 36 (5): 316- 321. | |
| 吕秀华. 转基因银中杨对根际土壤微生物的影响. 基因组学与应用生物学, 2018, 37 (5): 1965- 1970. | |
| Lü X H . The impact of transgenic poplar on soil microorganism group. Genomics and Applied Biology, 2018, 37 (5): 1965- 1970. | |
|
孙伟博, 魏朝琼, 马晓星, 等. 3类转基因南林895杨田间试验的安全性评估. 林业科学, 2020, 56 (10): 53- 62.
doi: 10.11707/j.1001-7488.20201006 |
|
|
Sun W B , Wei Z Q , Ma X X , et al. Safety assessment of a field trial of three types of transgenic poplar Nanlin895. Scientia Silvae Sinicae, 2020, 56 (10): 53- 62.
doi: 10.11707/j.1001-7488.20201006 |
|
| 王晓娜, 王小非, 安建平, 等. 转 MdSOS2L1 基因苹果植株根际微生物多样性的研究. 园艺学报, 2018, 45 (2): 333- 340. | |
| Wang X N , Wang X F , An J P , et al. Studies on rhizosphere microbial diversity of MdSOS2L1 transgenic apple. Acta Horticulturae Sinica, 2018, 45 (2): 333- 340. | |
| 魏冰, 李云, 杜宁霞, 等. 毛白杨杂种外源基因稳定性及其对土壤微生物的影响. 核农学报, 2009, 23 (6): 1054- 1059. | |
| Wei B , Li Y , Du N X , et al. Transgene stability of transgenic hybrid of Populus[(Populus tomentosa × P. bolleana) × P. tomentosa] and its effect on soil microorganisms. Acta Agriculturae Nucleatae Sinica, 2009, 23 (6): 1054- 1059. | |
|
张雁, 郭同斌, 潘惠新, 等. 转Bt基因南林895杨抗虫性及对土壤微生物影响分析. 林业科学研究, 2012, 25 (3): 346- 350.
doi: 10.3969/j.issn.1001-1498.2012.03.012 |
|
|
Zhang Y , Guo T B , Pan H X , et al. Analysis on insecticidal activity of Bt transgenic Populus deltoides × P. euramericana cv. 'Nanlin 895' and its effects on soil microorganism. Forest Research, 2012, 25 (3): 346- 350.
doi: 10.3969/j.issn.1001-1498.2012.03.012 |
|
| 朱文旭, 张冰玉, 黄秦军, 等. 转多基因库安托杨对土壤微生物群落功能的影响. 林业科学, 2015, 51 (11): 69- 75. | |
| Zhu W X , Zhang B Y , Huang Q J , et al. Effects of multi-gene transgenic Populus × euramericana'Guariento'on the function of microbial population in the rhizosphere soil. Scientia Silvae Sinicae, 2015, 51 (11): 69- 75. | |
| 朱文旭, 丁昌俊, 张伟溪, 等. 8年生转基因库安托杨外源基因转移及对土壤微生物数量影响的检测. 林业科学研究, 2017, 30 (2): 349- 353. | |
| Zhu W X , Ding C J , Zhang W X , et al. Exogenous gene transformation of 8-year-old multi-gene transgenic Populus × euramericana 'Guariento' and its influence on soil microbial quantity. Forest Research, 2017, 30 (2): 349- 353. | |
|
Aslam F , Khaliq A , Matloob A , et al. Allelopathy in agro-ecosystems: a critical review of wheat allelopathy-concepts and implications. Chemoecology, 2017, 27 (1): 1- 24.
doi: 10.1007/s00049-016-0225-x |
|
| Chang S J , Mahon E L , Mackay H A , et al. Genetic engineering of trees: progress and new horizons. In Vitro Cellular & Developmental Biology-Plant, 2018, 54, 341- 376. | |
| Daudu C K , Muchaonyerwa P , Pns M . Litterbag decomposition of genetically modified maize residues and their constituent Bacillus thuringiensis protein( Cry1Ab) under field conditions in the central region of the Eastern Cape. Ecosystems & Environment, 2009, 134, 153- 158. | |
| FAO. 2004. Preliminary review of biotechnology in forestry, including genetic modification. http://www.fao.org/docrep/008/ae574e/AE574E07.htm/. | |
| Figueredo M S , Ibanez F , Rodriguez J , et al. Simultaneous inoculation with beneficial and pathogenic microorganisms modifies peanut plant responses triggered by each microorganism. Plant Soil, 2018, 433 (1): 353- 3615. | |
|
Fladung M , Hoenicka H , Ahuja M R . Genomic stability and long-term transgene expression in poplar. Transgenic Research, 2013, 22 (6): 1167- 1178.
doi: 10.1007/s11248-013-9719-2 |
|
|
Frankenhuyzen K V , Beardmore T . Current status and environmental impact of transgenic forest trees. Canadian Journal of Forest Research, 2004, 34, 1163- 1180.
doi: 10.1139/x04-024 |
|
| Gao C , Ren X , Mason A S , et al. Horizontal gene transfer in plants. Functional & Integrative Genomics, 2014, 14, 23- 29. | |
|
Hu J J , Zhang J , Chen X , et al. An empirical assessment of transgene flow from a Bt transgenic poplar plantation. PLoS ONE, 2017, 12, e0170201.
doi: 10.1371/journal.pone.0170201 |
|
|
Icoz I , Stotzky G . Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biology and Biochemistry, 2008, 40 (3): 559- 586.
doi: 10.1016/j.soilbio.2007.11.002 |
|
|
Jouanin L , Goujon T , de Nadaï V , et al. Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiology, 2000, 123, 1363- 1373.
doi: 10.1104/pp.123.4.1363 |
|
|
Ke X , Lu Y , Conrad R . Different behaviour of methanogenic archaea and Thaumarchaeota in rice field microcosms. FEMS Microbiology Ecology, 2014, 87, 18- 29.
doi: 10.1111/1574-6941.12188 |
|
|
Keese P . Risks from GMOs due to horizontal gene transfer. Environmental Biosafety Research, 2008, 7 (3): 123- 149.
doi: 10.1051/ebr:2008014 |
|
|
Klocko A L , Lu H W , Magnuson A , et al. Phenotypic expression and stability in a large-scale field study of genetically engineered poplars containing sexual containment transgenes. Frontiers Bioengineering and Biotechnology, 2018, 6, 100.
doi: 10.3389/fbioe.2018.00100 |
|
|
Kumar S , Fladung M . Gene stability in transgenic aspen (Populus) II: Molecular characterization of variable expression in wild and hybrid aspen. Planta, 2001, 213, 731- 740.
doi: 10.1007/s004250100535 |
|
|
Kyndt T , Quispe D , Zhai H , et al. The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop. Proceedings of the National Academy of Science, 2015, 112 (18): 5844- 5849.
doi: 10.1073/pnas.1419685112 |
|
| Li Y L , Su X H , Zhang B Y , et al. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance. Tree Physiology, 2009, 29, 273- 279. | |
|
Li Z L , Bu N S , Cui J , et al. Effects of long-term cultivation of transgenic Bt rice (Kefeng-6) on soil microbial functioning and C cycling. Scientific Reports, 2017, 7 (1): 4647.
doi: 10.1038/s41598-017-04997-8 |
|
|
Londo J P , Bautista N S , Sagers C L , et al. Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids. Annals of Botany, 2010, 106, 957- 965.
doi: 10.1093/aob/mcq190 |
|
| Lu G H , Hua X M , Cheng J , et al. Impact of glyphosate on the rhizosphere microbial communities of an EPSPS-transgenic soybean line ZUTS31 by metagenome sequencing. Current Genomics, 2018, 19, 36- 49. | |
|
Luo J , Zhang S , Zhu X , et al. Effects of soil salinity on rhizosphere soil microbes in transgenic Bt cotton fields. Journal of Integrative Agriculture, 2017, 16, 1624- 1633.
doi: 10.1016/S2095-3119(16)61456-9 |
|
| Matveeva T V , Otten L . Widespread occurrence of natural genetic transformation of plants by Agrobacterium. Plant Molecular Biology, 2019, 101 (4/5): 415- 437. | |
|
Muhr M , Paulat M , Awwanah M , et al. CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control. Tree Physiology, 2018, 38, 1588- 1597.
doi: 10.1093/treephys/tpy088 |
|
| Parsons T J , Sinkar V P , Stettler R F , et al. Transformation of poplar by Agrobacterium tumefaciens. Biotechnology, 1986, 4, 533- 536. | |
|
Quispe-Huamanquispe D G , Gheysen G , Yang J , et al. The horizontal gene transfer of Agrobacterium T-DNAs into the series batatas (Genus Ipomoea) genome is not confined to hexaploid sweetpotato. Scientific Reports, 2019, 9 (1): 12584.
doi: 10.1038/s41598-019-48691-3 |
|
| Richardson D M , Rejmanek M . Trees and shrubs as invasive alien species-a global review. Diversity & Distributions, 2011, 17, 788- 809. | |
| Sedjo R A . Global agreements and US forestry: genetically modified trees. Journal of Forestry, 2005, 103, 109- 113. | |
| Stotzky G . Persistence and biological activity in soil of the insecticidal proteins from Bacillus thuringiensis, especially from transgenic plants. Plant and Soil, 2005, 266 (1): 77- 89. | |
| Strauss S H , Viswanath V . Field trials of GM trees in the USA: activity and regulatory developments. BMC Proceedings, 2011, 5 (Suppl7): O61. | |
|
Tran N H T , Oguchi T , Matsunaga E , et al. Environmental risk assessment of impacts of transgenic Eucalyptus camaldulensis events highly expressing bacterial Choline Oxidase A gene. Plant Biotechnology, 2018, 35, 393- 397.
doi: 10.5511/plantbiotechnology.18.0831a |
|
|
Verma P , Sharma A , Khan S A , et al. Morphogenetic and chemical stability of long-term maintained Agrobacterium-mediated transgenic Catharanthus roseus plants. Natural Product Research, 2015, 29, 315- 320.
doi: 10.1080/14786419.2014.940348 |
|
|
Wang X J , Xin Z , Yang J T , et al. Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes. Plant Journal, 2018, 93 (6): 1007- 1016.
doi: 10.1111/tpj.13825 |
|
|
Wang Y B , Zhang W X , Ding C J , et al. Endophytic communities of transgenic poplar were determined by the environment and niche rather than by transgenic events. Frontiers in Microbiology, 2019, 10, 588.
doi: 10.3389/fmicb.2019.00588 |
|
|
Zhu W X , Chu Y G , Ding C J , et al. Assessing bacterial communities in the rhizosphere of 8-year-old genetically modified poplar (Populus spp. ). Journal of Forestry Research, 2016, 27, 939- 947.
doi: 10.1007/s11676-015-0184-z |
|
|
Zuo L H , Yang R L , Zhen Z X , et al. A 5-year field study showed no apparent effect of the Bt transgenic 741 poplar on the arthropod community and soil bacterial diversity. Scientific Reports, 2018, 8 (1)
doi: 10.1038/s41598-018-20322-3 |
| [1] | Weibo Sun,Xindong Gong,Yan Zhou,Hongyan Li. Photosynthetic Characteristics of Transgenic Poplars with Maize PEPC and PPDK Gene at Young Plant Stage [J]. Scientia Silvae Sinicae, 2020, 56(7): 33-43. |
| [2] | Weibo Sun,Zhaoqiong Wei,Xiaoxing Ma,Hui Wei,Qiang Zhuge. Safety Assessment of a Field Trial of Three Types of Transgenic Poplar Nanlin895 [J]. Scientia Silvae Sinicae, 2020, 56(10): 53-62. |
| [3] | Zhang Chao, Wang Jinmao, Zhao Jie, Pang Dingwei, Zhang Dejian, Yang Minsheng. Expression Characteristics of Bt Gene in Transgenic Poplar Transformed by Different Multi-Gene Vectors [J]. Scientia Silvae Sinicae, 2019, 55(9): 61-70. |
| [4] | Huang Juan, Chen Cun, Zhang Weixi, Ding Changjun, Su Xiaohua, Huang Qinjun. Effects of Drought Stress on Anatomical Structure and Photosynthetic Characteristics of Transgenic JERF36 Populus alba×P. berolinensis Seedling Leaves [J]. Scientia Silvae Sinicae, 2017, 53(5): 8-15. |
| [5] | Chen Panfei, Ren Yachao, Zhang Jun, Wang Jinmao, Yang Minsheng. Expression and Transportation of Bt Toxic Protein in 8-Year-Old Grafted Transgenic Poplar [J]. Scientia Silvae Sinicae, 2016, 52(7): 46-52. |
| [6] | Zhu Wenxu, Zhang Bingyu, Huang Qinjun, Chu Yanguang, Ding Changjun, Zhang Weixi, Su Xiaohua. Effects of Multi-Gene Transgenic Populus×euramericana 'Guariento' on the Function of Microbial Population in the Rhizosphere Soil [J]. Scientia Silvae Sinicae, 2015, 51(11): 69-75. |
| [7] | Niu Xiaoyun;Huang Dazhuang;Yang Minsheng;Li Xiaofen;Fu Xinshuang. Temporal and Spatial Expression of Bt Toxic Protein in Transgenic Btcry3A Hybrid Poplar 741 [J]. Scientia Silvae Sinicae, 2011, 47(12): 154-157. |
| [8] | Wei Yuan;;Yu Lifei;Zhang Jinchi. Soil Microbial Characteristics during Succession of Degraded Karst Vegetation [J]. Scientia Silvae Sinicae, 2008, 44(7): 6-10. |
| [9] | Zhao Meng;Fang Xi;Tian Dalun. Relation between the Quantity of Soil Microbe and Soil Factor in the Second Rotation Chinese Fir Plantation [J]. Scientia Silvae Sinicae, 2007, 43(6): 7-12. |
| [10] | Guo Tongbin;Ji Baozhong;Zhuge Qiang;Huang Minren. Effect of Transgenic Poplars on the Activities of Detoxification Enzymes in Micromelalopha troglodyta Larvae [J]. Scientia Silvae Sinicae, 2007, 43(5): 59-63. |
| [11] | Hu Jianjun;Zhang Yunzhe;Lu Mengzhu;Zhang Jianguo;Zhang Shougong. Transgene Stability of Transgenic Populus nigra and Its Effects on Soil Microorganism [J]. Scientia Silvae Sinicae, 2004, 40(5): 105-109. |
| [12] | Zhang Zhen;Wang Junhui;Zhang Jianguo;Zhang Shougong. Effects of Transgenic Poplars to the Structure of Insect Community [J]. Scientia Silvae Sinicae, 2004, 40(2): 84-89. |
| [13] | Zhou GuoYing;Tian Dalun. ECOLOGICAL DISTRIBUTION OF THE SOIL MICROORGANISMS lN CHINESE FIR PLANTATION WATERSHED IN HUITONG COUNTY,HUNAN PROVINCE [J]. , 1997, 33(zk2): 104-109. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||