Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (11): 24-34.doi: 10.11707/j.1001-7488.LYKX20240737
• Frontiers and hot topics • Next Articles
Qianqian He2,Wanxia Yang1,2,3,Xulan Shang1,2,3,Caowen Sun1,2,3,Lei Zhang1,2,3,Shengzuo Fang1,2,3,*(
)
Received:2024-12-03
Revised:2025-02-08
Online:2025-11-25
Published:2025-12-11
Contact:
Shengzuo Fang
E-mail:fangsz@njfu.edu.cn
CLC Number:
Qianqian He,Wanxia Yang,Xulan Shang,Caowen Sun,Lei Zhang,Shengzuo Fang. Selection of Superior Cyclocarya paliurus Families for Leaf Production Based on the Accumulation of Water-Soluble Polysaccharide[J]. Scientia Silvae Sinicae, 2025, 61(11): 24-34.
Table 1
Basic information of the geographic locations, climate conditions and soil at three experimental sites"
| 因素Factor | 指标Index | 玉山 Yushan | 石门 Shimen | 沙县 Shaxian |
| 地理位置 Geographic locations | 经度Longitude(E)/(°) | 118.25 | 111.38 | 117.78 |
| 纬度Latitude(N)/(°) | 28.68 | 29.59 | 26.40 | |
| 海拔Altitude/m | 150~200 | 220~500 | 120~200 | |
| 气候 Climate | 年平均温度Annual mean temperature/℃ | 17.5 | 16.8 | 18.3 |
| 年降水量Annual precipitation/mm | 1 843 | 1 440 | 1 730 | |
| 无霜期Frost free period/d | 260 | 270 | 290 | |
| 年日照时数Annual sunshine hours/h | 1 700 | 1 600 | 1 750 | |
| 土壤 Soil | 土壤质地Soil texture | 壤土Loam | 壤土Loam | 沙壤土Loamy sand |
| pH | 4.49 | 5.66 | 4.70 | |
| 土壤密度Soil bulk density/(g·cm–3) | 1.39 | 1.39 | 1.09 |
Table 2
Variance analysis of growth and leaf water-soluble polysaccharide content in C. paliurus families"
| 变异来源 Variance source | df | F | ||
| 地径 Ground diameter | 树高 Tree height | 水溶性多糖含量 Water-soluble polysaccharide content | ||
| 家系Family | 10 | 3.440** | 6.058** | 2.660** |
| 试验点Site | 2 | 75.385** | 72.284** | 3.499* |
| 树龄Tree age | 1 | 330.343** | 210.390** | 107.402** |
| 家系×试验点Family×site | 20 | 2.343** | 3.158** | 2.659** |
| 家系×树龄Family×tree age | 10 | 0.098 | 0.648 | 2.268* |
| 试验点×树龄Site×tree age | 2 | 18.279** | 4.304* | 0.250 |
| 家系×试验点×树龄Family×site×tree age | 20 | 0.316 | 0.305 | 1.978** |
Fig.1
Variations in tree height and ground diameter growth among C. paliurus families at three experimental sites ifferent lowercase letters indicate significant differences among families within the same region, and different capital letters indicate significant differences in the same family at different sites (P<0.05, Duncan's multiple comparisons)."
Table 3
Variance analysis of individual leaf biomass and water-soluble polysaccharide accumulation in C. paliurus families"
| 性状Trait | 变异来源 Variance source | df | 均方 Mean squre | F |
| 单株叶 生物量 Individual leaf biomass | 家系Family | 10 | 5.423** | |
| 试验点Site | 2 | 36.118** | ||
| 家系×试验点 Family×site | 20 | 2.971** | ||
| 误差Error | 99 | |||
| 水溶性多糖 单株积累量 Water-soluble polysaccharide individual accumulation | 家系Family | 10 | 21.619 | 8.152** |
| 试验点Site | 2 | 73.193 | 27.600** | |
| 家系×试验点 Family×site | 20 | 10.067 | 3.796** | |
| 误差Error | 99 | 2.652 |
Table 4
Variations in genetic parameters of various traits in C. paliurus families"
| 性状 Traits | 方差 Variance | 遗传力 Heritability | 变异系数 Variation coefficient | |||||||
| 树高 Tree height | 217.945 | 497.156 | 0 | 0 | 1 718.828 | 0.48 | 95.55 | 17..37 | ||
| 地径 Ground diameter | 2.088 | 5.546 | 0 | 4.233 | 45.656 | 0.32 | 22.23 | 16.00 | ||
| 水溶性多糖含量 Water-soluble polysaccharide content | 13.497 | 34.024 | 0 | 0 | 18.170 | 0.51 | 12.84 | 14.90 | ||
| 单株叶生物量 Individual leaf biomass | 524.503 | 1 265.177 | 0 | 0 | 2 567.232 | 0.45 | 19.32 | 42.74 | ||
| 水溶性多糖单株积累量 Accumulation of water-soluble polysaccharide per plant | 0.936 | 1.945 | 0 | 0 | 2.574 | 0.52 | 27.41 | 45.45 | ||
| 陈曼雨, 顾志良. 青钱柳调节糖脂代谢活性成分及作用机制的研究进展. 食品工业科技, 2021, 42 (11): 382- 389. | |
| Chen M Y, Gu Z L. Research progress on the active components and mechanism of Cyclocarya paliurus in regulating glucose and lipid metabolism. Science and Technology of Food Industry, 2021, 42 (11): 382- 389. | |
| 苑海静, 成向荣, 虞木奎, 等. 麻栎优树自由授粉家系生长性状3地点间动态变异及优良家系选择. 林业科学研究, 2022, 35 (2): 9- 18. | |
| Yuan H J, Cheng X R, Yu M K, et al. Dynamic variation of growth traits in open-pollinated families of Quercus acutissima superior tree and selection of superior families among three sites. Research in Forestry Sciences, 2022, 35 (2): 9- 18. | |
| 方升佐. 青钱柳产业发展历程及资源培育研究进展. 南京林业大学学报 (自然科学版), 2022, 46 (6): 115- 126. | |
| Fang S Z. A review on the development history and the resource siliviculture of Cyclocarya paliurus industry. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46 (6): 115- 126. | |
| 方升佐, 尚旭岚, 杨万霞. 2022. 青钱柳地理变异研究. 北京: 中国林业出版社. | |
| Fang S Z, Shang X L, Yang W X. 2022. Research on geographical variations of Cyclocarya paliurus. Bejing: China Forestry Publishing House. [in Chinese] | |
| 贺海波, 朱丽金, 罗思旭, 等. 青钱柳功能性多糖的研究现状及展望. 生物资源, 2021, 43 (2): 110- 118. | |
| He H B, Zhu L J, Luo S X, et al. Current status and prospects of research on functional polysaccharides from Cyclocarya paliurus. Biological Resources, 2021, 43 (2): 110- 118. | |
| 蓝丽霞, 徐展宏, 孙操稳, 等. 青钱柳种质资源评价及其优良家系和单株筛选. 林业科学研究, 2022, 35 (5): 42- 51. | |
| Lan L X, Xu Z H, Sun C W, et al. Evaluation of Cyclocarya paliurus germplasm resources and screening of superior families and individual plants. Forestry Science Research, 2022, 35 (5): 42- 51. | |
| 卢玉翠, 王利晶, 龙仙梅, 等. 青钱柳多糖抑菌活性及作用机制研究. 食品安全质量检测学报, 2024, 15 (2): 275- 284. | |
| Lu Y C, Wang L J, Long X M, et al. Study on the antibacterial activity and mechanism of Cyclocarya paliurus polysaccharides. Journal of Food Safety and Quality, 2024, 15 (2): 275- 284. | |
| 田 力, 徐骋炜, 尚旭岚, 等. 青钱柳药用优良单株评价与选择. 南京林业大学学报(自然科学版), 2021, 45 (1): 21- 28. | |
| Tian L, Xu C W, Shang X L, et al. Evaluation and selection of excellent medicinal individuals of Cyclocarya paliurus. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (1): 21- 28. | |
| 王俊青, 赵天宇, 谷凤平, 等. 枫香半同胞家系子代遗传变异与优良家系选择研究. 西南林业大学学报, 2015, 35 (4): 33- 38. | |
| Wang J Q, Zhao T Y, Gu F P, et al. Genetic variation of progeny and selection of superior lineages in half-sib families of Chinese sweetgum. Journal of Southwest Forestry University, 2015, 35 (4): 33- 38. | |
| 汪荣斌, 秦亚东, 周娟娟. 国内近10年青钱柳多糖研究进展. 中国中医药信息杂志, 2017, 24 (5): 133- 136. | |
| Wang R B, Qin Y D, Zhou J J. Research progress of polysaccharides from Cyclocarya paliurus in China in the past 10 years. Chinese Journal of Traditional Chinese Medicine Information, 2017, 24 (5): 133- 136. | |
| 王舒扬, 田 力, 周顺陶, 等. 多倍化对青钱柳叶形态、光合性能和次生代谢产物积累的影响. 林业科学, 2024, 60 (8): 120- 131. | |
| Wang S Y, Tian L, Zhou S T, et al. Effects of polyploidizationon leaf morphology, photosynthetic performance, and accumulation of secondary metabolites in Cyclocarya paliurus. Forest Science, 2024, 60 (8): 120- 131. | |
| 谢建华, 谢明勇, 聂少平, 等. 苯酚-硫酸法测定青钱柳中多糖含量. 食品工业, 2010, 31 (4): 93- 95. | |
| Xie J H, Xie M Y, Nie S P, et al. Determination of polysaccharides from Cyclocarya paliurus (Batal.) Iljinskja by phenol-sulfuric acid. Food Industry, 2010, 31 (4): 93- 95. | |
| 谢建华, 申明月, 聂少平, 等. 青钱柳多糖活性炭脱色工艺. 南昌大学学报(理科版), 2013, 37 (4): 382- 385. | |
| Xie J H, Shen M Y, Nie S P, et al. Activated carbon decolorization process of Cyclocarya paliurus polysaccharide. Journal of Nanchang University (Science Edition), 2013, 37 (4): 382- 385. | |
| 许乃银, 李 健. GGE双标图的信息比校正原理与应用: 以长江流域棉花品种生态区划分为例. 中国生态农业学报, 2015, 23 (9): 1169- 1177. | |
| Xu L Y, Li J. Principles and applications of information ratio adjustment of GGE biplot: a case study of cotton mega-environment investigation inthe Yangtze River Valley. Chinese Journal of Eco-Agriculture, 2015, 23 (9): 1169- 1177. | |
| 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36 (11): 1805- 1819. | |
| Yan W K. Application of biplot analysis to crop variety multipoint test. Acta Agronomica Sinica, 2010, 36 (11): 1805- 1819. | |
|
严威凯. 品种选育与评价的原理和方法评述. 作物学报, 2022, 48 (9): 2137- 2154.
doi: 10.3724/SP.J.1006.2022.11105 |
|
|
Yan W K. A critical review on the principles and procedures for cultivar development and evaluation. Acta Agronomica Sinica, 2022, 48 (9): 2137- 2154.
doi: 10.3724/SP.J.1006.2022.11105 |
|
| 杨姝琦, 许业洲, 袁 慧, 等. 罗田垂枝杉子代生长性状遗传变异及早期选择. 广西师范大学学报(自然科学版), 2024, 42 (5): 193- 200. | |
| Yang S Q, Xu Y Z, Yuan H, et al. Genetic variation and early selection of growth traits in progeny of Epiphyllus chinensis. Journal of Guangxi Normal University (Natural Science Edition), 2024, 42 (5): 193- 200. | |
| 叶振南, 李 楠, 盛丹丹, 等. 青钱柳多糖对高脂血症大鼠血脂及抗脂质过氧化作用的影响. 现代食品科技, 2014, 30 (4): 1- 5. | |
| Ye Z N, Li N, Sheng D D, et al. Effects of Cyclocarya paliurus polysaccharides on hyperlipidemia and anti-lipid peroxidation in hyperlipidemic rats. Modern Food Science and Technology, 2014, 30 (4): 1- 5. | |
| 邹荣灿, 吴少锦, 焦思棋, 等. 不同产地青钱柳多糖的体外抗氧化及α-葡萄糖苷酶抑制活性. 食品工业科技, 2018, 39 (22): 25- 29. | |
| Zou R C, Wu S J, Jiao S Q, et al. In vitro antioxidant and α-glucosidase inhibitory activities of Cyclocarya paliurus polysaccharides from different origins. Food Industry Science and Technology, 2018, 39 (22): 25- 29. | |
|
Ahmed M S, Majeed A, Attia K A, et al. Country-wide, multi-location trials of green super rice lines for yield performance and stability analysis using genetic and stability parameters. Scientific Reports, 2024, 14 (1): 9416.
doi: 10.1038/s41598-024-55510-x |
|
|
Ambrósio M, Daher R F, Santos R M, et al. Multi-trait index: selection and recommendation of superior black bean genotypes as new improved varieties. BMC Plant Biology, 2024, 24 (1): 525.
doi: 10.1186/s12870-024-05248-5 |
|
| Behera P P, Singode A, Bhat B V, et al. Genetic gains in forage sorghum for adaptive traits for non-conventional area through multi-trait-based stability selection methods. Frontiers in Plant Science, 2024, 15, 1248663. | |
|
Demelash H. Genotype by environment interaction, AMMI, GGE biplot, and mega environment analysis of elite Sorghum bicolor (L.) Moench genotypes in humid lowland areas of Ethiopia. Heliyon, 2024, 10 (5): E26528.
doi: 10.1016/j.heliyon.2024.e26528 |
|
|
Deng B, Cao Y N, Fang S Z, et al. Variation and stability of growth and leaf flavonoid content in Cyclocarya paliurus across environments. Ind Crops Prod, 2015, 76, 386- 393.
doi: 10.1016/j.indcrop.2015.07.011 |
|
|
Din A, Gul R, Khan H, et al. Assessing the gnotype-by-evironment G× E ineraction in Desi chickpea via the byesian aditive main effects and multiplicative interaction model. Agriculture, 2024, 14 (2): 215.
doi: 10.3390/agriculture14020215 |
|
|
Fang S Z, Yang W X, Chu X L, et al. Provenance and temporal variations in selected flavonoids in leaves of Cyclocarya paliurus. Food Chemistry, 2011, 124, 1382- 1386.
doi: 10.1016/j.foodchem.2010.07.095 |
|
|
Fu X X, Zhou X D, Deng B, et al. Seasonal and genotypic variation of water-soluble polysaccharide content in leaves of Cyclocarya paliurus. Southern Forests: a Journal of Forest Science, 2015, 77 (3): 231- 236.
doi: 10.2989/20702620.2015.1010698 |
|
|
Ghaffar M, Asghar M J, Shahid M, et al. Estimation of G× E interaction of Lentil genotypes for yield using AMMI and GGE biplot in Pakistan. Journal of Soil Science and Plant Nutrition, 2023, 23 (2): 2316- 2330.
doi: 10.1007/s42729-023-01182-x |
|
| Liu Q, Huang L L, Fu Co, et al. Genotype–environment interaction of crocin in Gardenia jasminoides by AMMI and GGE biplot analysis. Food Science & Nutrition, 2022, 10 (11): 4080- 4087. | |
|
Liu Y, Fang S Z, Zhou M M, et al. Geographic variation in water-soluble polysaccharide content and antioxidant activities of Cyclocarya paliurus leaves. Industrial Crops and Products, 2018, 121, 180- 186.
doi: 10.1016/j.indcrop.2018.05.017 |
|
| Khandelwal V, Patel R, Choudhary K B, et al. 2024. Stabilityanalysis and identification of superior hybrids inpearl millet [Pennisetum glaucum (L. ) R. Br.] using the multi trait stability index. Plants, 13(8): 1101. | |
|
Krishnamurthy S L, Sharma P C, Sharma D K, et al. Additive main effects and multiplicative interaction analyses of yield performance in rice genotypes for general and specific adaptation to salt stress in locations in India. Euphytica, 2021, 217, 1- 15.
doi: 10.1007/s10681-020-02732-5 |
|
| Kroon J, Andersson B, Mullin T J. Genetic variation in the diameter-height relationship in Scots pine (Pinus sylvestris). Canadian Journal of Forest Research, 2008, 38 (9): 2279- 2289. | |
| Navrood F F, Zakaria R A, Rad M M, et al. Stability analysis of groundnut (Arachis hypogaea L.) genotypes using AMMI and GGE biplot models and ideal genotype selection indicator. Indian Journal of Genetics and Plant Breeding, 2023, 83 (4): 518- 525. | |
|
Olivoto T, Lúcio A D C, da Silva J A G, et al. Mean performance and stability in multi-environment trials Ⅱ: selection based on multiple traits. Agronomy Journal, 2019, 111(6), 2961- 2969.
doi: 10.2134/agronj2019.03.0221 |
|
|
Omrani A, Omrani S, Khodarahmi M, et al. Evaluation of grain yield stability in some selected wheat genotypes using AMMI and GGE biplot methods. Agronomy, 2022, 12 (5): 1130.
doi: 10.3390/agronomy12051130 |
|
|
Sharma J P, Sankhyan H P, Thakur S, et al. Estimates of genetic parameters for growth, leaf and biomass traits of Indian Willow (Salix tetrasperma Roxb. ). Journal of Tree Sciences, 2019, 38 (1): 1- 5.
doi: 10.5958/2455-7129.2019.00001.3 |
|
|
Tesfaye M, Feyissa T, Hailesilassie T, et al. Identification of high erucic acid Brassica carinata genotypes through multi-trait stability index. Agriculture, 2024, 14 (7): 1100.
doi: 10.3390/agriculture14071100 |
|
|
Tian Y, Yang W, Wan S, et al. Insights into the hormone-regulating mechanism of adventitious root formation in softwood cuttings of Cyclocarya paliurus and optimization of the hormone-based formula for promoting rooting. International Journal of Molecular Science, 2024, 25, 1343.
doi: 10.3390/ijms25021343 |
|
|
Wang M Y, Jiang S, Deng Y, et al. Nine new nor-3, 4-seco-dammarane triterpenoids from the leaves of Cyclocarya paliurus and their hypoglycemic activity. Bioorganic Chemistry, 2024, 152, 107763.
doi: 10.1016/j.bioorg.2024.107763 |
|
| Wardofa G A, Ararsa A D. Evaluation of grain yield stability analysis in bread wheat (Triticum aestivum L.) genotypes using parametric method. American Journal of Life Sciences, 2020, 8 (6): 189- 195. | |
|
Xie J H, Liu X, Shen M Y, et al. Purification, physicochemical characterisation and anticancer activity of a polysaccharide from Cyclocarya paliurus leaves. Food Chemistry, 2013, 136 (3/4): 1453- 1460.
doi: 10.1016/j.foodchem.2012.09.078 |
|
|
Xie J H, Zhang F, Wang Z J, et al. Preparation, characterization and antioxidant activities of acetylated polysaccharides from Cyclocarya paliurus leaves. Carbohydrate Polymers, 2015, 133, 596- 604.
doi: 10.1016/j.carbpol.2015.07.031 |
|
|
Zhang Y, Zeng L, Ouyang K, Wang W. Cholesterol-lowering effect of polysaccharides from Cyclocarya paliurus in vitro and in hypercholesterolemia mice. Foods, 2024, 13 (15): 2343.
doi: 10.3390/foods13152343 |
|
|
Zhao Y, Feng Y, Yang C, et al. Genetic parameters and genotype-environment interactions in Paulownia clonal tests in temperate and subtropical regions of China. Forests, 2022, 13 (12): 2113.
doi: 10.3390/f13122113 |
|
| Zhou M M, Pei C, Xu L S, et al 2021. Genotype-environment interactions for tree growth and leaf phytochemical content of Cyclocarya paliurus (Batal. ) Iljinskaja. Forests, 12(6) : 735. |
| [1] | Jing Zhang, Weixi Zhang, Changjun Ding, Yanguang Chu, Xiaohua Su, Jun Zhao, Xuehui Su, Zhengsai Yuan, Zhenghong Li, Jinjin Yu, Qinjun Huang. Differences in Leaf Sugar Metabolism of Populus deltoides Parents and their Hybrids with Different Growth Potentials and Different Forest Ages [J]. Scientia Silvae Sinicae, 2025, 61(5): 131-145. |
| [2] | Qingbin Jiang,Jingxiang Meng,Baojun Li,Haijun Chen,Bijiang Fang,Lang Guo,Shenghui Tian. Genetic Evaluation and Selection of 8-Year-Old Semi-Sibling Family of Michelia macclurei [J]. Scientia Silvae Sinicae, 2025, 61(1): 104-114. |
| [3] | Ruiyan Wei,Weihua Zhang,Fang Xu,Yuanzhen Lin. Genomic Selection for Growth Traits and Early Selection of Superior Progeny in Castanopsis hystrix [J]. Scientia Silvae Sinicae, 2024, 60(12): 83-91. |
| [4] | Yuedong Shi,Hong Zheng,Daiquan Ye,Jisen Shi,Liming Bian. Spatial and Competition Effects for Growth Traits of Chinese Fir and Their Impacts on Estimations of Genetic Parameters [J]. Scientia Silvae Sinicae, 2022, 58(5): 75-84. |
| [5] | Ying Feng,Qingliang Lin,Dongming Pan. In vitro Conservation of Callus of Cyclocarya paliurus [J]. Scientia Silvae Sinicae, 2020, 56(9): 58-66. |
| [6] | Yunpeng Wang,Rui Zhang,Zhichun Zhou,Shaohua Huang,Lizhen Ma,Huihua Fan. Dynamic Patterns of Genetic Variation in Early Growth Traits of the Open-Pollinated Families of Schima superba Plus Tree [J]. Scientia Silvae Sinicae, 2020, 56(9): 77-86. |
| [7] | Shen Le, Xu Jianmin, Li Guangyou, Lu Zhaohua, Yang Xueyan, Zhu Ying, Hu Yang, Song Peining, Guo Wenzhong. Genetic Parameters for Growth Traits in Eucalyptus urophylla×E. grandis F1 Hybrids [J]. Scientia Silvae Sinicae, 2019, 55(7): 68-76. |
| [8] | Zhang Shuainan, Luan Qifu, Jiang Jingmin. Genetic Variation Analysis for Growth and Wood Properties of Slash Pine Based on The Non-Destructive Testing Technologies [J]. Scientia Silvae Sinicae, 2017, 53(6): 30-36. |
| [9] | Wang Chaoying, Li Changxiao, Zhang Ye. Effects of Submergence-Drought Stresses on Growth and Physiological Characteristics of Salix rosthornii Seedlings [J]. Scientia Silvae Sinicae, 2013, 49(12): 164-170. |
| [10] | Luan Qifu;Jiang Jingmin;Zhang Jianzhong;Zhang Shougong. Estimation of Heritability and Combining Ability for Growth, Stem-Straightness and Wood Density of the F1 Generation of Pinus taeda×P. caribaea [J]. Scientia Silvae Sinicae, 2011, 47(3): 178-183. |
| [11] | Ren Huadong;Yao Xiaohua;Kang Wenling;Li Sheng;Wang Kailiang;Duan Fuwen. Genetic Variation and Early Selection of Provenances and Families of Acacia mearnsii [J]. Scientia Silvae Sinicae, 2010, 46(3): 153-160. |
| [12] | Song Xingshun;Wu Di;Liu Xuemei;Li Kailong;Song Funan;Yang Chuanping. Changes in Antioxidative Enzymes Parameters of Populus ussuriensis Seedlings after Spaceflight of the Seeds [J]. Scientia Silvae Sinicae, 2009, 12(7): 145-149. |
| [13] | Zhou Liang Liu;Shengquan;Zhu Yongxia;Huang Zhenying;Shao Zhuoping . Relationship between Growth Traits and Growth Stress of Masson Pine [J]. Scientia Silvae Sinicae, 2008, 44(6): 109-112. |
| [14] | Li Shanwen;Zhang Zhiyi;Yu Zhishui;He Chengzhong;An Xinmin;Li Bailian.. Correlation between Molecular Genetic Distances among Parents and Growth Traits of Progenies in Populus [J]. Scientia Silvae Sinicae, 2008, 44(5): 150-154. |
| [15] | Sun Xiaomei;Zhang Shougong;Li Shiyuan;Hou Yimei. Multi-Traits Selection of Open-Pollinated Larix kaempferi Families for Pulpwood Purpose [J]. Scientia Silvae Sinicae, 2005, 41(4): 48-54. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||