Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (11): 14-23.doi: 10.11707/j.1001-7488.LYKX20250116
• Frontiers and hot topics • Previous Articles Next Articles
Zhiwei Zheng1,Ming Ma2,Yong Liu1,Jiaxi Wang1,Yufan Zhu1,Guolei Li1,*(
)
Received:2025-03-03
Revised:2025-10-27
Online:2025-11-25
Published:2025-12-11
Contact:
Guolei Li
E-mail:glli226@163.com
CLC Number:
Zhiwei Zheng,Ming Ma,Yong Liu,Jiaxi Wang,Yufan Zhu,Guolei Li. Effects of Different Biochar Addition Ratios on the Growth and Physiology of Quercus variabilis and Fraxinus chinensis in Cadmium-Contaminated Soil[J]. Scientia Silvae Sinicae, 2025, 61(11): 14-23.
Fig.1
Effects of biochar treatment on soil cadmium content and soil pH CK represents the control (the seedling substrate contains neither cadmium nor biochar), T0, T2.5, T5, and T10 respectively represent the application of biochar ratios of 0%, 2.5%, 5%, and 10% to cadmium-contaminated soil. Lowercase letters indicate significant differences (P<0.05) among different treatments of the same tree species."
Table 2
ANOVA of the height,ground diameter and biomass changes of Quercus variabilis and Fraxinus chinensis seedlings"
| 变异来源 Source of variation | 苗高 Seedling height | 地径 Ground diameter | 地上部分 生物量 Aboveground biomass | 地下部分 生物量 Underground biomass | 总生物 量Total biomass |
| 处理 Treatment | 15.5** | 11.8** | 7.6** | 7.7** | 7.3** |
| 树种 Species | 3.3 | 124.4** | 0.1 | 5.4* | 0.2 |
| 处理×树种 Treatment× species | 1.4 | 0.4 | 2.5 | 3.4* | 2.7* |
Fig.2
Effects of biochar treatment on seedling height, ground diameter, and biomass of Quercus variabilis and Fraxinus chinensis CK represents the control (the seedling substrate contains neither cadmium nor biochar), T0, T2.5, T5, and T10 respectively represent the application of biochar ratios of 0%, 2.5%, 5%, and 10% to cadmium-contaminated soil. In fig.2C, the upper part of the horizontal axis at 0 represents the aboveground biomass of the seedlings, and the lower part represents the biomass of the underground part of the seedlings. Different lowercase letters in Fig.2A, Fig.2B and the aboveground biomass of Fig.2C indicate significant differences (P<0.05) among different treatments of the same tree species. Difference lowercase letters in the underground biomass of Fig.2C indicate significant differences (P<0.05) based on the interaction effect of treatment and tree species."
Fig.3
Effects of biochar treatments on cadmium content in Quercus variabilis and Fraxinus chinensis seedlings CK represents the control (the seedling substrate contains neither cadmium nor biochar), T0, T2.5, T5, and T10 respectively represent the application of biochar ratios of 0%, 2.5%, 5%, and 10% to cadmium-contaminated soil. The upper horizontal axis at 0 represents the aboveground cadmium content of the seedlings, and the lower part represents the cadmium content in the underground part of the seedlings. Different lowercase letters indicate that the cadmium content in the aboveground and underground parts of the seedlings is significantly different (P<0.05) based on the interaction effect of treatment and tree species."
Table 3
ANOVA of cadmium content and migration indicators in seedlings"
| 变异来源 Source of variation | 地上部分 镉含量 Cd content in aboveground | 地下部 镉含量 Cd content in underground | 总镉 含量 Total Cd content | 富集系数 Bioconcen tration factor | 转运 系数 Transfer factor |
| 处理 Treatment | 14.2** | 51.1** | 52.8** | 8.8** | 17.8** |
| 树种 Species | 11.2** | 186.8** | 107.9** | 44.3** | 106.6** |
| 处理×树种 Treatment× species | 8.2** | 15.4** | 7.3** | 1.4 | 25.3** |
Table 4
ANOVA of the photosynthetic indexes of Quercus variabilis and Fraxinus chinensis seedlings in cadmium-contaminated soil after the application of biochar"
| 变异来源 Source of variation | 最大光化学 量子产量Fv/Fm Maximal quantum yield of PSⅡ | 叶片净光合速率 Net photosynthetic rate of leaves | 胞间CO2浓度 Intercellular CO2 concentration | 蒸腾速率 Transpiration rate | 气孔导度 Stomatal conductance | 叶片水分利用效率 Water use efficiency of leaf |
| 处理 Treatment | 1.8 | 2.2 | 2.2 | 3.0* | 3.3* | 1.4 |
| 树种 Species | 30.0** | 22.5** | 5.8* | 0.03 | 6.9** | 1.7 |
| 处理×树种 Treatment×species | 1.9 | 0.1 | 4.1** | 1.9 | 1.6 | 3.7** |
Fig.5
Effects of biochar on photosynthetic indexes of leaves of Quercus variabilis and Fraxinus chinensis CK represents the control (the seedling substrate contains neither cadmium nor biochar),T0, T2.5, T5, and T10 respectively represent the application of biochar ratios of 0%, 2.5%, 5%, and 10% to cadmium-contaminated soil. Different lowercase letters in Fig.5A and Fig.5B indicate significant differences (P<0.05) among tree species;Different lowercase letters in Fig.5D and Fig.5E indicate significant differences (P<0.05) among treatments; Different lowercase letters in Fig.5C and Fig. 5F indicate significant differences (P<0.05) based on the interaction effect between treatment and tree species."
Table 5
ANOVA of antioxidant enzyme activities in leaves of Quercus variabilis and Fraxinus chinensis seedlings in cadmium-contaminated soil in response to biochar application"
| 变异来源 Source of variation | 超氧化物歧化酶 (SOD酶)活性 Superoxide dismutase enzyme activity | 过氧化物酶 (POD酶)活性 Peroxidase enzyme activity | 过氧化氢酶 (CAT酶)活性 Catalase enzyme activity |
| 处理 Treatment | 1.2 | 0.8 | 1.2 |
| 树种 Species | 71.5** | 65.3** | 31.6** |
| 处理×树种 Treatment × species | 0.9 | 0.8 | 0.8 |
Fig.6
Effects of biochar treatments on activities of three antioxidant enzymes in leaves of Quercus variabilis and Fraxinus chinensis CK represents the control (the seedling substrate contains neither cadmium nor biochar), T0, T2.5, T5, and T10 respectively represent the application of biochar ratios of 0%, 2.5%, 5%, and 10% to cadmium-contaminated soil. Different lowercase letters indicate significant differences (P<0.05) among tree species."
| 卜晓莉, 薛建辉. 生物炭对土壤生境及植物生长影响的研究进展. 生态环境学报, 2014, 23 (3): 535- 540. | |
| Bu X L, Xue J H. Biochar effects on soil habitat and plant growth: a review. Ecology and Environmental Sciences, 2014, 23 (3): 535- 540. | |
| 曹艳晓, 陈 诺, 徐鑫宇, 等. 生物炭修复塑料-镉复合污染土壤潜力与机制研究. 中国环境科学, 2025, 45 (3): 1395- 1409. | |
| Cao Y X, Chen N, Xu X Y, et al. Exploring the potential of biochar for the remediation of soils co-contaminated with plastics and cadmium. China Environmental Science, 2025, 45 (3): 1395- 1409. | |
| 陈 宏, 徐秋曼, 王 葳, 等. 2000. 镉对小麦幼苗脂质过氧化和保护酶活性的影响. 西北植物学报, 20 (3): 399−403. | |
| Chen H, Xu Q M, Wang W, et al. 2000. The effect of Cd2+ on the activity of protectiase and cell membrance lipid peroxidation change of wheat seedlings. Acta Botanica Boreali-Occidentalia Sinica, 20(3): 399−403. [in Chinese] | |
| 高梦雨. 2020. 长期施用生物炭和炭基肥对土壤有机碳及团聚体微生物特性的影响. 沈阳: 沈阳农业大学. | |
| Gao M Y. 2020. Effects of long-term application of biochar and biochar-based fertilizer on soil organic carbon and aggregate microbial characteristics. Shenyang: Shenyang Agricultural University. [in Chinse] | |
| 国家林业局. 2001. 生态公益林建设技术规程(GB/T 18337.3—2001). 北京: 中国标准出版社. | |
| State Forestry Administration. 2001. Non-commercial forest construction-technical regulation(GB/T 18337.3—2001). Beijing: Standards Press of China. [in Chinese] | |
| 贾中民, 王 力, 魏 虹, 等. 垂柳和旱柳对镉的积累及生长光合响应比较分析. 林业科学, 2013, 49 (11): 51- 59. | |
| Jia Z M, Wang L, Wei H, et al. Comparative analysis of Salix babylonica and Salix matsudana for their cadmium accumulation, growth and photosynthesis in response to cadmium contamination. Scientia Silvae Sinicae, 2013, 49 (11): 51- 59. | |
| 简敏菲, 何旭芬, 彭雨露, 等. 生物炭对镉污染土壤中紫花地丁的生长及生理生态的影响. 江西师范大学学报(自然科学版), 2022, 46 (1): 99- 106. | |
| Jian M F, He X F, Peng Y L, et al. The effects of biochar on the growth and physiological ecology of Viola philippica in cadmium-contaminated soil. Journal of Jiangxi Normal University (Natural Science Edition), 2022, 46 (1): 99- 106. | |
| 蒋欣梅, 薛冬冬, 于锡宏, 等. 玉米秸秆生物炭对镉污染土壤中小白菜生长的影响. 江苏农业学报, 2020, 36 (4): 1000- 1006. | |
| Jiang X M, Xue D D, Yu X H, et al. Effects of corn-stalk biochar on the growth of Chinese cabbage in cadmium contaminated soil. Jiangsu Journal of Agricultural Sciences, 2020, 36 (4): 1000- 1006. | |
| 雷星宇, 胡 瑶, 邓钢桥, 等. 钝化剂对卷丹百合镉含量及生理特性的影响. 中国农学通报, 2022, 38 (19): 66- 72. | |
| Lei X Y, Hu Y, Deng G Q, et al. Effects of passivator on cadmium content and physiological characteristics of Lilium lancifolium. Chinese Agricultural Science Bulletin, 2022, 38 (19): 66- 72. | |
| 李 彪, 李 丹. 微波消解ICP-MS法测定植物样品中的镉. 现代科学仪器, 2011, 28 (1): 112- 113. | |
| Li B, Li D. Determination of trace amounts of cadmium in a plant samples by ICP-MS. Modern Scientific Instruments, 2011, 28 (1): 112- 113. | |
| 李合生. 2000. 植物生理生化试验原理和技术. 北京: 高等教育出版社. | |
| Li H S. 2000. Principles and techniques of plant physiology and biochemistry experiments. Beijing: Higher Education Press. [in Chinese] | |
| 李鸿博, 钟 怡, 张昊楠, 等. 生物炭修复重金属污染农田土壤的机制及应用研究进展. 农业工程学报, 2020, 36 (13): 173- 185. | |
| Li H B, Zhong Y, Zhang H N, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (13): 173- 185. | |
| 李江月, 陈 良, 赵志宏, 等. 提质培优技术对秦岭南坡栓皮栎林结构和健康的影响. 绿色科技, 2024, 26 (11): 76- 81. | |
| Li J Y, Chen L, Zhao Z H, et al. Effects of quality improvement, training and tending on the structures and health of Quercus variabilis Bl. on the southern slope of the Qinling Mountains. Journal of Green Science and Technology, 2024, 26 (11): 76- 81. | |
| 李京威, 党晶晶, 关卫省. 2023. 重金属污染土壤修复方法研究进展. 南昌: 中国环境科学学会2023年科学技术年会论文集(二), 732−736. | |
| Li J W, Dang J J, Guan W S. 2023. Research progress on remediation methods for heavy metal contaminated soil. Nanchang: Proceedings of the 2023 annual conference of science and technology of the Chinese Society for Environmental Sciences (II), 732−736. [in Chinese] | |
| 李 康. 2019. 生物炭对龙葵生长和富集Cd能力的影响研究. 济南: 济南大学. | |
| Li K. 2019. Study on the effects of biochar on growth and cadmium accumulation of Solanum nigrum L. Jinan: University of Jinan. [in Chinese] | |
| 刘阿梅. 2014. 生物炭对植物生长发育及镉吸收的影响. 湘潭: 湖南科技大学. | |
| Liu A M. 2014. Effects of biochar on plant growth and uptake of heavy metal cadmium. Xiangtan: Hunan University of Science and Technology. [in Chinese] | |
| 刘 克, 和文祥, 张 红, 等. 镉在小麦各部位的富集和转运及籽粒镉含量的预测模型. 农业环境科学学报, 2015, 34 (8): 1441- 1448. | |
| Liu K, He W X, Zhang H, et al. Cadmium accumulation and translocation in wheat and grain Cd prediction. Journal of Agro-Environment Science, 2015, 34 (8): 1441- 1448. | |
| 卢德亮, 乔 璐, 陈立新, 等. 哈尔滨市区绿地土壤重金属污染特征及植物富集. 林业科学, 2012, 48 (8): 16- 24. | |
| Lu D L, Qiao L, Chen L X, et al. Soil pollution characteristics by heavy metals and the plant enrichment in green space of urban areas of Harbin. Scientia Silvae Sinicae, 2012, 48 (8): 16- 24. | |
| 马阳阳, 廉梅花, 王 鹏. 超富集植物修复土壤重金属污染及强化措施研究进展. 环境保护与循环经济, 2024, 44 (1): 25- 32. | |
| Ma Y Y, Lian M H, Wang P. Research progress on the remediation of heavy metal pollution in soil by hyperenrichment plants and enhancement measures. Environmental Protection and Circular Economy, 2024, 44 (1): 25- 32. | |
| 宋 洋, 李晓娜, 蒋 新. 2019. 生物炭和根系分泌物对土壤中多环芳烃消减与微生物群落结构的影响. 重庆: 2019年中国土壤学会土壤环境专业委员会、土壤化学专业委员会联合学术研讨会. | |
| Song Y, Li X N, Jiang X. 2019. The effects of biochar and root secretions on the reduction of polycyclic aromatic hydrocarbons in soil and the structure of microbial communities. Chongqing: The 2019 joint academic symposium of the Soil Environment Professional Committee and Soil Chemistry Professional Committee of the Chinese Society of Soil Science. [in Chinese] | |
| 檀建新, 尹 君, 王文忠, 等. 镉对小麦、玉米幼苗生长和生理生化反应的影响. 河北农业大学学报, 1994, 17 (S1): 83- 87. | |
| Tan J X, Yin J, Wang W Z, et al. Effects of cadmium on the growth and physiologicol and biochemical reaction of wheat seedlings. Journal of Hebei Agricultural University, 1994, 17 (S1): 83- 87. | |
| 王晓娟, 王文斌, 杨 龙, 等. 重金属镉(Cd)在植物体内的转运途径及其调控机制. 生态学报, 2015, 35 (23): 7921- 7929. | |
| Wang X J, Wang W B, Yang L, et al. Transport pathways of cadmium (Cd) and its regulatory mechanisms in plant. Acta Ecologica Sinica, 2015, 35 (23): 7921- 7929. | |
| 吴立文, 李国雷, 杨钦淞, 等. 栎树研究进展与展望. 林业科学, 2025, 61 (10): 1- 14. | |
| Wu L W, Li G L, Yang Q S, et al. Research progress and prospect on oak trees. Scientia Silvae Sinicae, 2025, 61 (10): 1- 14. | |
| 赵牧秋, 金凡莉, 孙照炜, 等. 制炭条件对生物炭碱性基团含量及酸性土壤改良效果的影响. 水土保持学报, 2014, 28 (4): 299- 303, 309. | |
| Zhao M Q, Jin F L, Sun Z W, et al. Effects of pyrolysis condition on basic group of biochar and amelioration of acid soil. Journal of Soil and Water Conservation, 2014, 28 (4): 299- 303, 309. | |
| 赵蕊蕊, 刘 勇, 王 凯. 生物炭和有机肥对毛白杨人工林地木质分解及土壤养分循环相关酶活性的影响. 林业科学, 2023, 59 (11): 1- 11. | |
| Zhao R R, Liu Y, Wang K. Effects of biochar and manure on wood decomposition and soil enzyme activities related soil nutrient cycling in a triploid Populus tomentosa plantation. Scientia Silvae Sinicae, 2023, 59 (11): 1- 11. | |
| 中华人民共和国生态环境部. 2016. 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法(HJ 803—2016). 北京: 中国环境科学出版社. | |
| Ministry of Ecology and Environment of the People’s Republic of China. 2016. Soil and sediment-determination of aqua regia extracts of 12 metal elements-inductively coupled plasma mass spectrometry(HJ 803—2016). Beijing: China Environmental Press. [in Chinese] | |
| 中华人民共和国生态环境部. 2018. 土壤环境质量 农用地土壤污染风险管控标准(试行)(GB 15618—2018). 北京: 中国环境科学出版社. | |
| Ministry of Ecology and Environment of the People’s Republic of China. 2018. Soil environmental quality risk control standard for soil contamination of agricultural land(GB 15618—2018). Beijing: China Environmental Press. [in Chinese] | |
| 中华人民共和国生态环境部. 2019. 土壤pH值的测定 电位法(HJ 962—2018). 北京: 中国环境科学出版社. | |
| Ministry of Ecology and Environment of the People’s Republic of China. 2019. Soil-determination of pH-potentiometry(HJ 962—2018). Beijing: China Environmental Press. [in Chinese] | |
| 周际海, 程 坤, 郜茹茹, 等. 土壤镉污染对香樟幼苗光合和生理特性的影响. 林业科学, 2020, 56 (6): 193- 201. | |
| Zhou J H, Cheng K, Gao R R, et al. Photosynthesis and other physiological characteristics of Cinnamomum camphora seedlings under cadmium stress. Scientia Silvae Sinicae, 2020, 56 (6): 193- 201. | |
| 朱秀红, 张梦霄, 崔明康, 等. 不同生物炭种类和用量对镉胁迫下小麦幼苗光合特性和镉积累的影响. 河南农业大学学报, 2023, 57 (3): 404- 412. | |
| Zhu X H, Zhang M X, Cui M K, et al. Effects of different biochar types and dosages on photosynthetic characteristics and cadmium accumulation in wheat under cadmium stress. Journal of Henan Agricultural University, 2023, 57 (3): 404- 412. | |
|
Gill S S, Hasanuzzaman M, Nahar K, et al. Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiology and Biochemistry, 2013, 63, 254- 261.
doi: 10.1016/j.plaphy.2012.12.001 |
|
| He L Z, Fan S L, Müller K, et al. Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils. Science of The Total Environment, 2018, 625 (1): 987- 993. | |
| Hasan S A, Fariduddin Q, Ali B, et al. Cadmium: toxicity and tolerance in plants. Journal of Environmental Biology, 2009, 30 (2): 165- 174. | |
| Wang L, Chen H R, Wu J Z, et al. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil. Journal of Hazardous Materials, 2021, 414 (15): 125494. | |
| Zhu Q H, Huang D Y, Liu S L, et al. 2013. Accumulation and subcellular distribution of cadmium in ramie (Boehmeria nivea L. Gaud. ) planted on elevated soil cadmium contents. Plant, Soil and Environment, 59(2): 57–61. |
| [1] | Mengmeng Liu,Guoyue Yu,Zejian Li,Kai Wang,Meicai Wei. A New Species of Nematus Panzer (Hymenoptera: Tenthredinidae), a Defoliator of Quercus variabilis in Beijing, China [J]. Scientia Silvae Sinicae, 2023, 59(2): 107-111. |
| [2] | Na Wang,Jiaxi Wang,Guolei Li,Qing Li,Lin Zhu,Tian Li,Wen Liu. Seed Germination and Emergence Characteristics and Physiological and Biochemical Changes of Quercus variabilis [J]. Scientia Silvae Sinicae, 2022, 58(4): 1-10. |
| [3] | Yuan Chen,Tingting Yan,Sheng Yang,Zongying Fu,Gaiyun Li,Haiqing Ren. Extractive Chemical Components of Quercus variabilis and Quercus acutissima [J]. Scientia Silvae Sinicae, 2021, 57(4): 191-198. |
| [4] | Junliang Xu,Lei Zhu,Zhiqiang Shi,Jing Wu,Yiping Zhang. Allocation of Non-Structural Carbohydrates Content in Coarse Roots and Stems of Quercus variabilis [J]. Scientia Silvae Sinicae, 2021, 57(1): 200-206. |
| [5] | Shi Wenhui, Li Guolei, Su Shuchai, Liu Yong, Jia Liming, Shang Zhiguo. Combined Effects of Cotyledon Excision and Nursery Fertilization on Field Performance of Quercus variabilis Container Seedlings [J]. Scientia Silvae Sinicae, 2018, 54(1): 64-73. |
| [6] | Liu Jiajia, Li Guolei, Liu Yong, Shang Zhiguo. Combined Effects of Container Type and Radicle Pruning on Seedling Quality and Early Field Performance of Quercus variabilis Container Seedlings [J]. Scientia Silvae Sinicae, 2017, 53(6): 47-55. |
| [7] | Liu Ziqiang, Yu Xinxiao, Jia Guodong, Jia Jianbo, Lou Yuanhai, Zhang Kun. Water Use Characteristics of Platycladus orientalis and Quercus variabilis in Beijing Mountain Area [J]. Scientia Silvae Sinicae, 2016, 52(9): 22-30. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||