Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (8): 70-79.doi: 10.11707/j.1001-7488.LYKX20240362
• Research papers • Previous Articles Next Articles
Yan Zeng1,Jirong Mao1,Xianglin Chen1,Xinyu Xu2,Jing Liang1,Ying Liu1,*()
Received:
2024-06-13
Online:
2025-08-25
Published:
2025-09-02
Contact:
Ying Liu
E-mail:ying.liu@nwafu.edu.cn
CLC Number:
Yan Zeng,Jirong Mao,Xianglin Chen,Xinyu Xu,Jing Liang,Ying Liu. Osmotic Regulation Mechanism of Pinus tabuliformis Seedlings under the Joint Effects of Nitrogen Addition and Drought Stress[J]. Scientia Silvae Sinicae, 2025, 61(8): 70-79.
Table 1
Growth characteristics of P. tabuliformis seedlings under different drought stress treatments and nitrogen addition levels"
指标 Indicator | 干旱胁迫处理 Drought stress treatments | 氮添加水平 Nitrogen addition levels | ||
N0 | N3 | N6 | ||
净光合速率 Net photosynthetic rate/(μmol?m–2s–1) | CK | 5.64±0.13Bb | 6.56±0.75Bab | 10.22±0.04Aa |
RE25 | 8.11±0.50Aab | 10.05±0.07Ab | 10.27±0.04Aa | |
RE50 | 5.33±0.01Bb | 5.56±0.01BCb | 6.77±1.06Ba | |
RE75 | 4.94±0.05Ba | 5.30±0.04Ca | 5.45±0.53Ba | |
水分利用效率 Water use efficiency/(μmol?mol–1) | CK | 8.63±0.22Bb | 11.75±1.68Bb | 16.28±0.07Aa |
RE25 | 11.03±0.67Ab | 15.99±0.13Aab | 16.36±0.06Aa | |
RE50 | 10.88±0.01Aa | 10.86±0.01Ba | 11.63±1.41Ba | |
RE75 | 7.46±0.09Ca | 8.06±0.06Ca | 7.64±0.62Ca | |
叶面积 Leaf area/m2 | CK | 0.65±0.02Cc | 0.81±0.01Cb | 1.14±0.04Ca |
RE25 | 0.75±0.03Bc | 0.95±0.05Bb | 1.52±0.04Aa | |
RE50 | 1.04±0.04Ab | 1.09±0.03Ab | 1.32±0.04Ba | |
RE75 | 0.57±0.03Cc | 0.92±0.04BCb | 1.21±0.03BCa | |
总生物量 Total biomass/g | CK | 118.71±1.61Bb | 123.09±3.47Ba | 131.05±2.33Ba |
RE25 | 116.82±2.88Bc | 129.83±6.76Ab | 156.41±2.07Aa | |
RE50 | 125.15±5.93Ab | 126.01±6.99Ab | 155.35±4.26Aa | |
RE75 | 90. 67±3.55Cc | 115.95±1.48Bb | 128.49±2.54Ca | |
根冠比 Root-shoot ratio/(g?g–1) | CK | 0.153±0.009Cb | 0.167±0.013Ca | 0.177±0.008Ba |
RE25 | 0.160±0.005Bb | 0.191±0.032Ba | 0.174±0.008Bb | |
RE50 | 0.165±0.008Bb | 0.171±0.006Ca | 0.187±0.005Aa | |
RE75 | 0.237±0.008Aa | 0.201±0.009Ab | 0.233±0.019Aa |
Fig.1
Hydraulic conductivity of P. tabuliformis seedlings under different drought stress treatments CK, RE25, RE50 and RE75 represent control(water adequacy), mild stress, moderate stress and severe stress, respectively; NB, OB, and R6 represent new branches, old branches, and root 6, respectively. Different lowercase letters indicate significant differences between different organs (P<0.05), and different uppercase letters indicate significant differences between different drought stress treatments (P<0.05)."
Fig.2
Hydraulic function of new branch of P. tabuliformis seedlings under the coupling effect of drought stress and nitrogen addition ; CK, RE25, RE50 and RE75 represent control(water adequacy), mild stress, moderate stress and severe stress, respectively. Different lowercase letters indicate significant differences among different nitrogen addition levels (P<0.05), and different uppercase letters indicate significant differences between different drought stress treatments (P<0.05)."
Table 2
Variance analysis of drought stress and nitrogen application on seedling growth indexes of P. tabuliformis"
指标 Index | 干旱胁迫处理 Drought stress treatment | 氮添加水平 Nitrogen addition level | 干旱胁迫处理×氮添加水平 Drought stress treatment × nitrogen addition level |
总生物量Total biomass | 65.66** | 88.93** | 13.52** |
净光合速率Net photosynthetic rate | 146.60** | 43.24** | 14.78** |
水分利用效率Water use efficiency | 69.98** | 29.79** | 15.65** |
导水率Hydraulic conductivity | 71.07** | 232.60** | 65.70** |
可溶性糖Soluble sugars | 83.06** | 154.50** | 11.35** |
淀粉Starch | 5.24** | 152.30** | 5.67** |
非结构性碳水化合物Non-structural carbohydrates | 42.68** | 491.00** | 6.43** |
脯氨酸Proline | 5.89** | 231.50** | 20.56** |
K+ | 30.51** | 1.99ns | 5.75** |
Fig.4
Correlation analysis between hydraulic function and osmoregulatory substances after nitrogen addition and drought stress a uses the data of the three nitrogen addition levels N0-CK, N3-CK, and N6-CK, b uses the data of the four drought stress treatments N0-CK, N0-RE25, N0-RE50, and N0-RE75."
陈建勋, 王晓峰. 2002. 植物生理学实验指导. 广州: 华南理工大学出版社. | |
Chen J X, Wang X F. 2002. Experimental instruction of plant physiology. Guangzhou: South China University of Technology Press. [in Chinese] | |
何如梦, 王百田, 于显威, 等. 晋西黄土区油松林的生长释放与生长抑制. 应用与环境生物学报, 2018, 24 (6): 1204- 1210. | |
He R M, Wang B T, Yu X W, et al. Growth release and growth inhibition of Pinus tabuliformis forest in the Loess Plateau of western Shanxi Province, China. Chinese Journal of Applied and Environmental Biology, 2018, 24 (6): 1204- 1210. | |
洪琮浩, 洪 震, 雷小华, 等. 氮添加对长序榆C、N、P养分含量及非结构性碳水化合物含量的影响. 林业科学, 2020, 56 (6): 186- 192. | |
Hong C H, Hong Z, Lei X H, et al. Effects of nitrogen addition on contents of C, N and P nutrient and non-structural carbohydrate in Ulmus elongata. Scientia Silvae Sinicae, 2020, 56 (6): 186- 192. | |
李合生. 2000. 植物生理生化实验原理和技术. 北京: 高等教育出版社. | |
Li H S. 2000. Principles and techniques of plant physiological and biochemical experiment. Beijing: Higher Education Press. [in Chinese] | |
李 娜. 2014. 落叶松幼苗对干旱胁迫及氮添加的生理生态响应. 哈尔滨: 东北林业大学. | |
Li N. 2014. Physiological and ecological responses of Larix gmelinii seedlings under soil drought stress and different nitrogen levels. Harbin: Northeast Forestry University. [in Chinese] | |
苏 炜, 陈 平, 吴 婷, 等. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响. 植物生态学报, 2023, 47 (8): 1094- 1104.
doi: 10.17521/cjpe.2022.0473 |
|
Su W, Chen P, Wu T, et al. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings. Chinese Journal of Plant Ecology, 2023, 47 (8): 1094- 1104.
doi: 10.17521/cjpe.2022.0473 |
|
张聪惠. 2022. 黄土高原典型草原植被群落和土壤微生物养分利用特征对降水和氮沉降的响应. 兰州: 兰州大学. | |
Zhang C H. 2022. Responses of vegetation communities and soil microbial nutrient characteristics to precipitation and nitrogen deposition in typical steppe on the Loess Plateau. Lanzhou: Lanzhou University. [in Chinese] | |
张 宏, 曾 雄, 王爱莲, 等. 不同施氮量对棉花产量、养分吸收及氮素利用的影响. 新疆农业科学, 2021, 58 (9): 1656- 1664. | |
Zhang H, Zeng X, Wang A L, et al. Effects of different nitrogen application rates on yield, nutrient uptake and nitrogen utilization of cotton in southern Xinjiang. Xinjiang Agricultural Sciences, 2021, 58 (9): 1656- 1664. | |
Chen X, Zhao P, Ouyang L, et al. Whole-plant water hydraulic integrity to predict drought-induced Eucalyptus urophylla mortality under drought stress. Forest Ecology and Management, 2020, 468, 118179.
doi: 10.1016/j.foreco.2020.118179 |
|
Du D S, Jiao L, Wu X, et al. 2024. Drought determines the growth stability of different dominant conifer species in central Asia. Global and Planetary Change, 234: 104370. | |
Dziedek C, von Oheimb G, Calvo L, et al. Does excess nitrogen supply increase the drought sensitivity of European beech (Fagus sylvatica L. ) seedlings?Plant Ecology, 2016, 217 (4): 393- 405. | |
Eastman B A, Adams M B, Brzostek E R, et al. Altered plant carbon partitioning enhanced forest ecosystem carbon storage after 25 years of nitrogen additions. New Phytologist, 2021, 230 (4): 1435- 1448.
doi: 10.1111/nph.17256 |
|
Egilla J N, Davies F T, Boutton T W. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica, 2005, 43 (1): 135- 140.
doi: 10.1007/s11099-005-5140-2 |
|
Gersony J T, Hochberg U, Rockwell F E, et al. Leaf carbon export and nonstructural carbohydrates in relation to diurnal water dynamics in mature oak trees. Plant Physiology, 2020, 183 (4): 1612- 1621.
doi: 10.1104/pp.20.00426 |
|
Jaleel C A, Manivannan P, Sankar B, et al. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids and Surfaces B: Biointerfaces, 2007, 60 (2): 201- 206.
doi: 10.1016/j.colsurfb.2007.06.010 |
|
Kishor P B K, Sangam S, Amrutha R N, et al. 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance. Current Science, 88(3): 424–438. | |
Li W B, Hartmann H, Adams H D, et al. The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2, and nitrogen fertilization in tree species. Tree Physiology, 2018, 38 (11): 1706- 1723. | |
Mahmood T, Abdullah M, Ahmar S, et al. Incredible role of osmotic adjustment in grain yield sustainability under water scarcity conditions in wheat (Triticum aestivum L). Plants, 2020, 9 (9): 1208.
doi: 10.3390/plants9091208 |
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum, 2021, 172 (2): 1321- 1335.
doi: 10.1111/ppl.13297 |
|
Peng Y H, Chen K L, Wang G L, et al. Nitrogen addition regulates the growth of Pinus tabuliformis by changing distribution patterns of endogenous hormones in different organs. New Forests, 2023, 54 (5): 853- 865.
doi: 10.1007/s11056-022-09947-5 |
|
Savi T, Casolo V, Dal Borgo A, et al. Drought-induced dieback of Pinus nigra: a tale of hydraulic failure and carbon starvation. Conservation Physiology, 2019, 7 (1): coz012. | |
Shi H L, Ma W J, Song J Y, et al. Physiological and transcriptional responses of Catalpa bungei to drought stress under sufficient-and deficient-nitrogen conditions. Tree Physiology, 2017, 37 (11): 1457- 1468.
doi: 10.1093/treephys/tpx090 |
|
Sigala J A, Uscola M, Oliet J A, et al. Drought tolerance and acclimation in Pinus ponderosa seedlings: the influence of nitrogen form. Tree Physiology, 2020, 40 (9): 1165- 1177.
doi: 10.1093/treephys/tpaa052 |
|
Sperry J S, Donnelly J R, Tyree M T. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell and Environment, 11(1): 35–40. | |
Sperry J S, Love D M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytologist, 2015, 207 (1): 14- 27.
doi: 10.1111/nph.13354 |
|
Tomasella M, Petrussa E, Petruzzellis F, et al. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. International Journal of Molecular Sciences, 2020, 21 (1): 144. | |
Wang R Z, Yun L L, Mao Y X, et al. Nitrogen deposition alters drought-induced changes in biomass and nonstructural carbohydrates allocation patterns of Quercus mongolica seedlings. Scientia Horticulturae, 2024, 325, 112573.
doi: 10.1016/j.scienta.2023.112573 |
|
Wang X, Wu G Y, Li D Y, et al. Moderate nitrogen deposition alleviates drought stress of Bretschneidera sinensis. Forests, 2023, 14 (1): 137.
doi: 10.3390/f14010137 |
|
Zhang D, Jing H, Wang G L. Responses of non-structural carbohydrates content in leaves of different plant species in Pinus tabuliformis plantation to nitrogen addition. The Journal of Applied Ecology, 2019, 30 (2): 489- 495. | |
Zuo K Y, Fan L L, Guo Z W, et al. Aboveground biomass component plasticity and allocation variations of bamboo (Pleioblastus amarus) of different regions. Forests, 2024, 15 (1): 43. |
[1] | Yongming Sun,Binli Wang. Fuel Loadings and Affecting Factors of Pinus tabuliformis Forest of Different Origins in Shanxi [J]. Scientia Silvae Sinicae, 2025, 61(3): 27-37. |
[2] | Xiaoyan Zhang,Xiaofeng Ni,Qiong Cai,Chengjun Ji. Leaf Anatomical Traits of Understory Plants and Their Response to Nitrogen Addition in a Chronosequence of Larix principis-rupprechtii Plantations in Saihanba, Hebei Province [J]. Scientia Silvae Sinicae, 2025, 61(1): 37-46. |
[3] | Shengxi Zhang,Yanhong He,Longfei Hao,Zhengying Nie,Tingyan Liu,Yunpeng Wang,Yongchun Hua. Regulating Effects of Soil Microorganisms and Nitrogen Addition on Rhizosphere Microhabitat and Root Morphology of Caragana korshinskii [J]. Scientia Silvae Sinicae, 2024, 60(9): 80-89. |
[4] | Yuanxi Liu,Lina Wang,Junwen Wu,Shimin Li. Non-Structural Carbohydrate and Biomass Characteristics of Pinus yunnanensis Seedlings under Continuous Drought Stress [J]. Scientia Silvae Sinicae, 2024, 60(6): 71-85. |
[5] | Zhang Yunxiang, Lü Shiqi, Liu Tairui, Li Jinfang, Guo Jinping. Differentiation of Nitrogen Use Strategies of Three Typical Forest Community Dominant Species in Guandishan Forest Region [J]. Scientia Silvae Sinicae, 2024, 60(2): 12-20. |
[6] | Fanbo Zhou,Yumin Liu,Yamin Liu,Chongwen Dai,Qi Gao,Yulin Zhang,Yating Zhu. Alleviation Effect and Physiological Mechanism of Exogenous Methyl Jasmonate on Drought Damage of Toona ciliata Seedlings [J]. Scientia Silvae Sinicae, 2024, 60(12): 58-71. |
[7] | Xinhao Li,Dehuai Zhang,Zhaosen Zhang,Jian Li,Jun Cao,Jichao Wei,Xiaomeng Wu,Yun Tian,Peng Liu,Haiqun Yu. Seasonal Variations in Carbon Fluxes and Their Responses to Environmental Factors in a Pinus tabuliformis Plantation Ecosystem in Miyun, Beijing [J]. Scientia Silvae Sinicae, 2023, 59(7): 35-44. |
[8] | Wenhao Liu,Xiao Wang,Wenbiao Duan,Pengtao Yu,Yanhui Wang,Yipeng Yu. Water Balance Characters of Pinus tabuliformis Plantation in Xining City of China [J]. Scientia Silvae Sinicae, 2023, 59(4): 46-56. |
[9] | Xin Cheng,Chunze Wu,Qingyu Wei,Wei Li,Xing Wei. Growth and Physiological Responses of Fraxinus mandshurica Seedlings Inoculated with Arbuscular Mycorrhizal Fungi to Drought Stress [J]. Scientia Silvae Sinicae, 2023, 59(2): 58-66. |
[10] | Ren You,Xiangwen Deng,Yanting Hu,Shuai Ouyang,Liang Chen,Wenhua Xiang. Progress on Physiological and Ecological Responses of Trees to Drought Stress and Rewatering [J]. Scientia Silvae Sinicae, 2023, 59(11): 124-136. |
[11] | Ze Gu,Xiaodong Liu,Feng Chen. Response of Twig Functional Traits of Pinus tabuliformis to Different Fire Severities [J]. Scientia Silvae Sinicae, 2022, 58(8): 99-108. |
[12] | Jiazhou Shang,Tianhui Gao,Weifeng Wang,Xinjun Zhou,Yuzheng Zong. Effect of Nitrogen Addition for Two Consecutive Years on Photosynthetic Characteristics, Carbon and Nitrogen Distribution of Populus × euramericana 'Zhongjin7' Seedlings [J]. Scientia Silvae Sinicae, 2022, 58(6): 23-32. |
[13] | Qingzhi Lin,Xiangyuan Zhu,Peili Mao,Lin Zhu,Longmei Guo,Zexiu Li,Banghua Cao,Yingdong Hao,Haitao Tan,Pizheng Hong,Xiaojun Lu. Effects of NaCl and PEG Stresses on Germination and Seedling Growth of Robinia pseudoacacia Seeds with Different Sizes [J]. Scientia Silvae Sinicae, 2022, 58(2): 100-112. |
[14] | Junguang Yao,Ya Geng,Yijing Liu,Yi An,Lichao Huang,Wei Zeng,Mengzhu Lu. Effects of S-Adenosylmethionine Decarboxylase Gene on Drought Tolerance of Populus alba × P. glandulosa '84K' [J]. Scientia Silvae Sinicae, 2022, 58(2): 125-132. |
[15] | Linfeng Ye,Yan Li,Zhongyuan Wang,Shitong Lu,Tiantian Pan,Sen Chen,Jiangbo Xie. Efficiency-Safety Relationships of Hydraulic Conducting System for Branch and Root of Three Pinus Species Growing in Humid Area [J]. Scientia Silvae Sinicae, 2021, 57(7): 194-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||