林业科学 ›› 2025, Vol. 61 ›› Issue (1): 166-175.doi: 10.11707/j.1001-7488.LYKX20230582
收稿日期:
2023-11-30
出版日期:
2025-01-25
发布日期:
2025-02-09
通讯作者:
孙柏玲
E-mail:sun_bai_ling@163.com
基金资助:
Yan Chen,Surong Meng,Anmin Huang,Yingying Su,Bailing Sun*()
Received:
2023-11-30
Online:
2025-01-25
Published:
2025-02-09
Contact:
Bailing Sun
E-mail:sun_bai_ling@163.com
摘要:
目的: 利用三聚氰胺-尿素-乙二醛(MUG)树脂浸渍人工林红锥木材,以改善红锥木材易开裂变形等问题,提高其附加值。方法: 采用不同质量分数(10%、15%、20%和25%)的MUG树脂对人工林红锥木材进行浸渍改性处理(经改性处理的样品分别标记为MUG10、MUG15、MUG20、MUG25),探究改性处理前后木材物理力学性能变化,并应用氮气吸附、压汞和扫描电镜等方法分析改性处理前后木材孔隙结构和微观形貌变化。结果: 随着MUG树脂质量分数增加,木材的尺寸稳定性和力学性能均得到显著提高。当MUG树脂的质量分数为25%时,改性材的增重率(WPG)达21.1%,绝干密度为762 kg·m?3,且其早晚材绝干密度差相比素材降低42.0%,改性后木材密度更加均匀。MUG25改性材的弦向、径向和体积抗胀率(ASE)分别为52.06%、39.96%和44.30%,径向和弦向湿胀率之比为0.70,改性材各向异性降低,尺寸稳定性提高。与素材相比,MUG25改性材的抗弯弹性模量(MOE)、抗弯强度(MOR)和顺纹抗压强度(CS)分别提高35.59%、30.01%和32.78%,径切面、弦切面和横切面硬度分别提高37.13%、13.46%和27.94%。氮气吸附和压汞测试结果表明改性材的孔隙率降低,扫描电镜结果显示改性材中导管、木纤维和纹孔等细胞孔隙被树脂填充。结论: MUG树脂浸渍改性技术可有效改善人工林红锥木材尺寸稳定性差的缺陷,拓展其应用范围。
中图分类号:
陈炎,孟素戎,黄安民,苏莹莹,孙柏玲. 三聚氰胺-尿素-乙二醛树脂浸渍改性对人工林红锥木材物理力学性能的影响[J]. 林业科学, 2025, 61(1): 166-175.
Yan Chen,Surong Meng,Anmin Huang,Yingying Su,Bailing Sun. The Influence of Melamine-Urea-Glyoxal (MUG) Resin Impregnation Modification on the Physical and Mechanical Properties of Castanopsis hystrix Wood[J]. Scientia Silvae Sinicae, 2025, 61(1): 166-175.
表1
各性能指标测试所需试件尺寸和数量"
测试项目Test item | 试件尺寸Sample size | 样本数Sample number per group |
增重率Weight percent gain (WPG) | 20 mm (R)×20 mm (T)×20 mm (L) | 20 |
增容率Bulking effect (BE) | 20 mm (R)×20 mm (T)×20 mm (L) | 20 |
绝干密度Oven-dried density | 20 mm (R)×20 mm (T)×20 mm (L) | 20 |
尺寸稳定性Dimensional stability | 20 mm (R)×20 mm (T)×20 mm (L) | 20 |
剖面密度Profile density | 20 mm (R)×50 mm (T)×50 mm (L) | 9 |
抗弯弹性模量Modulus of elasticity (MOE) | 20 mm (R)×20 mm (T)×300 mm (L) | 20 |
抗弯强度Modulus of rupture (MOR) | 20 mm (R)×20 mm (T)×300 mm (L) | 20 |
顺纹抗压强度Compressive strength parallel to grain (CS) | 20 mm (R)×20 mm (T)×30 mm (L) | 20 |
硬度Static hardness (SH) | 50 mm (R)×50 mm (T)×70 mm (L) | 6 |
氮气吸附测试Nitrogen adsorption | 1 mm (R)×1 mm (T)×5 mm (L) | 3 |
压汞测试Mercury intrusion | 10 mm (R)×10 mm (T)×12 mm (L) | 3 |
扫描电镜Scanning electron microscope (SEM) | 5 mm (R)×5 mm (T)×5 mm (L) | 3 |
表2
改性红锥木材增重率和增容率测试结果"
处理 Treatment | 增重率Weight percent gain (WPG) | 增容率Bulking effect (BE) | |||||
平均值 Mean (%) | 标准差 Standard deviation (%) | 变异系数 Coefficient of variation (%) | 平均值 Mean (%) | 标准差 Standard deviation (%) | 变异系数 Coefficient of variation (%) | ||
MUG10 | 9.3 | 1.0 | 10.2 | 2.24 | 0.84 | 37.72 | |
MUG15 | 14.1 | 0.6 | 4.5 | 3.15 | 0.78 | 24.83 | |
MUG20 | 19.6 | 1.5 | 7.7 | 4.10 | 0.77 | 18.67 | |
MUG25 | 21.1 | 0.9 | 4.2 | 4.85 | 0.81 | 16.76 |
表3
基于常规和X射线剖面密度测试的改性前后红锥木材绝干密度"
处理 Treatment | 绝干密度Oven-dried density | 剖面密度平均值Average value of the profile density | |||||
平均值 Mean/(kg·m?3) | 标准差 Standard deviation(kg·m?3) | 变异系数 Coefficient of variation (%) | 平均值 Mean/(kg·m?3) | 标准差 Standard deviation/(kg·m?3) | 变异系数 Coefficient of variation (%) | ||
UW | 654 | 29 | 4.6 | 672 | 20 | 2.9 | |
MUG10 | 701 | 26 | 3.7 | 712 | 11 | 1.6 | |
MUG15 | 726 | 21 | 2.8 | 720 | 21 | 3.0 | |
MUG20 | 750 | 24 | 3.2 | 733 | 8 | 1.2 | |
MUG25 | 762 | 22 | 2.8 | 755 | 6 | 0.8 |
苌姗姗, 胡进波, 刘 元, 等. 人工林红锥木材干燥特性初探. 木材工业, 2005, (6): 22- 23, 27. | |
Chang S S, Hu J B, Liu Y, et al. Drying characteristics of plantation grown Castanopsis hystrix. China Wood Industry, 2005, (6): 22- 23, 27. | |
苌姗姗, 胡进波, Clair Bruno, 等. 氮气吸附法表征杨木应拉木的孔隙结构. 林业科学, 2011, 47 (10): 134- 140. | |
Chang S S, Hu J B, Bruno C, et al. Pore structure characterization of poplar tension wood by nitrogen adsorption-desorption method. Scientia Silvae Sinicae, 2011, 47 (10): 134- 140. | |
陈良健. 氮气吸附法与压汞法测量SCR脱硝催化剂孔容孔径的应用. 化工管理, 2018, (28): 195- 197. | |
Chen L J. Application of nitrogen adsorption method and mercury intrusion method to measure pore size of SCR denitration catalyst. Chemical Enterprise Management, 2018, (28): 195- 197. | |
刁海林, 蔡道雄, 唐继新, 等. 水浸时效对红锥锯材性能的影响. 中南林业科技大学学报, 2015, 35 (6): 103- 106, 113. | |
Diao H L, Cai D X, Tang J X, et al. Influence of water immersion ageing on properties of Castanopsis hystrix. Journal of Central South University of Forestry & Technology, 2015, 35 (6): 103- 106, 113. | |
郝潇寒, 李明丽, 黄亦帅, 等. 水性环氧树脂浸渍改性对2种速生材性能的影响. 西南林业大学学报(自然科学), 2023, 43 (1): 156- 163. | |
Hao X H, Li M L, Huang Y S, et al. Effect of impregnation modification of water-borne epoxy resin on properties of 2 fast-growing wood. Journal of Southwest Forestry University (Natural Sciences), 2023, 43 (1): 156- 163. | |
黄全能, 陈存及, 邱尔发, 等. 红锥天然林群落特征研究. 亚热带植物通讯, 1998, 27 (2): 7- 11. | |
Huang Q N, Chen C J, Qiu E F, et al. The community characteristies of natural forests of Castaopsis hrstrix. Subtropical Plant Science, 1998, 27 (2): 7- 11. | |
蒋业恒, 高 娜, 陈 勇, 等. 中国木材进口需求材种结构数量关系分析. 世界林业研究, 2021, 34 (2): 62- 67. | |
Jiang Y H, Gao N, Chen Y, et al. A quantitative relationship analysis of demanded species structure in China’s timber importation. World Forestry Research, 2021, 34 (2): 62- 67. | |
吕建雄, 林志远, 骆秀琴, 等. 红锥和西南桦人工林木材干缩特性的研究. 北京林业大学学报, 2005, 27 (1): 6- 9. | |
Lü J X, Lin Z Y, Luo X Q, et al. Shrinkage characteristics of Castanopsis hystrix and Betula alnoides plantation wood. Journal of Beijing Forestry University, 2005, 27 (1): 6- 9. | |
李 娜, 杨袁木, 徐 放, 等. 2023. 红锥优树无性系群体表型变异研究及综合选择. 中南林业科技大学学报, 43(8): 73−84. | |
Li N, Yang Y M, Xu F, et al 2023. Phenotypic variation study and comprehensive selection of elite clonal populations of Castanopsis hystrix. Journal of Central South University of Forestry and Technology, 43(8): 73−84. [in Chinese] | |
刘 衡, 潘启龙, 唐继新, 等. 红锥薄木饰面工艺研究. 林产工业, 2023, 60 (8): 38- 42. | |
Liu H, Pan Q L, Tang J X, et al. Study on decorative technology of Castanopsis hystrix veneer. China Forest Products Industry, 2023, 60 (8): 38- 42. | |
苏莹莹, 孙柏玲, 柴宇博, 等. 三聚氰胺-尿素-乙二醛树脂合成及其改性杨木物理力学性能. 木材科学与技术, 2022, 36 (5): 56- 62.
doi: 10.12326/j.2096-9694.2022036 |
|
Su Y Y, Sun B L, Chai Y B, et al. Preparation of melamine-urea-glyoxal (MUG) resin and properties of MUG modified poplar. Chinese Journal of Wood Science and Technology, 2022, 36 (5): 56- 62.
doi: 10.12326/j.2096-9694.2022036 |
|
谢延军, 符启良, 王清文, 等. 木材化学功能改良技术进展与产业现状. 林业科学, 2012, 48 (9): 154- 163.
doi: 10.11707/j.1001-7488.20120924 |
|
Xie Y J, Fu Q L, Wang Q W, et al. Wood chemical modification: the state of the art of technologies and commercialization. Scientia Silvae Sinicae, 2012, 48 (9): 154- 163.
doi: 10.11707/j.1001-7488.20120924 |
|
闫 力. 氮气吸附法与压汞法测试脱硝催化剂孔容孔径的对比分析. 化工管理, 2020, (13): 48- 51.
doi: 10.3969/j.issn.1008-4800.2020.13.027 |
|
Yan L. Comparative analysis of pore volume and pore diameter of denitrification catalyst by nitrogen adsorption method and mercury injection method. Chemical Enterprise Management, 2020, (13): 48- 51.
doi: 10.3969/j.issn.1008-4800.2020.13.027 |
|
杨宇明. 云南珍贵用材林发展现状及对策建议. 云南林业, 2014, 35 (4): 16- 18. | |
Yang Y M. Present situation and countermeasures of Yunnan precious timber forest development. Yunnan Forestry, 2014, 35 (4): 16- 18. | |
岳 孔, 卢晓宁, 刘伟庆. 速生杨木PF浸渍增强机理及力学性能可靠性分析. 南京林业大学学报(自然科学版), 2010, 34 (4): 49- 51. | |
Yue K, Lu X N, Liu W Q. Reliability of mechanical performance of untreated and treated fast-growing poplar wood with PF. Journal of Nanjing Forestry University (Natural Sciences Edition), 2010, 34 (4): 49- 51. | |
赵海军, 魏爱华, 张家祥, 等. 基于氮气吸附法和压汞法的玄武岩孔隙结构特征及其对储层渗透性的影响. 第四纪研究, 2023, 43 (2): 560- 572. | |
Zhao H J, Wei A H, Zhang J X, et al. Microscopic pore structure characteristics of basalt and its influence on reservoir permeability based on nitrogen adsorption and mercury injection. Quaternary Sciences, 2023, 43 (2): 560- 572. | |
郑万钧. 1985. 中国树木志. 北京: 中国林业出版社, 2221-2222. | |
Zheng W J. 1985. Flora of China. Beijing: China Forestry Publishing House, 2221-2222. [in Chinese] | |
Behr G, Bollmus S, Gellerich A, et al. The influence of curing conditions on the properties of European beech (Fagus sylvatica) modified with melamine resin assessed by light microscopy and SEM-EDX. International Wood Products Journal, 2018, 9 (1): 22- 27.
doi: 10.1080/20426445.2017.1416738 |
|
Čermák P, Baar J, Dömény J, et al. Wood-water interactions of thermally modified, acetylated and melamine formaldehyde resin impregnated beech wood. Holzforschung, 2022, 76 (5): 437- 450.
doi: 10.1515/hf-2021-0164 |
|
Chang S S, Clair B, Ruelle J, et al. Mesoporosity as a new parameter for understanding tension stress generation in trees. Journal of Experimental Botany, 2009, 60 (11): 3023- 3030.
doi: 10.1093/jxb/erp133 |
|
Clair B, Gril J, Di Renzo F, et al. Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules, 2008, 9 (2): 494- 498.
doi: 10.1021/bm700987q |
|
Deka M, Saikia C N. Chemical modification of wood with thermosetting resin: effect on dimensional stability and strength property. Bioresource Technology, 2000, 73 (2): 179- 181.
doi: 10.1016/S0960-8524(99)00167-4 |
|
Dorieh A, Farajollah Pour M, Ghafari Movahed S, et al. A review of recent progress in melamine-formaldehyde resin based nanocomposites as coating materials. Progress in Organic Coatings, 2022, 165, 106768.
doi: 10.1016/j.porgcoat.2022.106768 |
|
Hill C A S. 2017. Wood modification: chemical, thermal and other processes. John Wiley & Sons. | |
Li Z H, Zhang X M, Song S S, et al. Curing characteristics of low molecular weight melamine-urea-formaldehyde (MUF) resin-impregnated poplar wood. Construction and Building Materials, 2022, 325, 126814.
doi: 10.1016/j.conbuildmat.2022.126814 |
|
Ping L J, Chai Y B, Zhang F W, et al. 2021. In polymerization of environment friendly melamine-urea-glyoxal resin in rubber wood for improved physical and mechanical properties. International Journal of Polymer Science, 8510571. | |
Qi W Y, Liu C, Wu X L, et al. Physical and chemical properties of Castanopsis fargesii wood after heat treatment in sand or vacuum media. BioResources, 2021, 16 (3): 5821- 5837.
doi: 10.15376/biores.16.3.5821-5837 |
|
Sandberg D, Kutnar A, Mantanis G. Wood modification technologies: a review. Iforest-Biogeosciences and Forestry, 2017, 10 (6): 895- 908.
doi: 10.3832/ifor2380-010 |
|
Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57 (4): 603- 619.
doi: 10.1351/pac198557040603 |
|
Song B, Zhu X L, Wang W, et al. Toughening of melamine-formaldehyde foams and advanced applications based on functional design. Journal of Industrial and Engineering Chemistry, 2023, 119, 130- 152.
doi: 10.1016/j.jiec.2022.11.069 |
|
Xi X D, Liao J J, Pizzi A, et al. 5-Hydroxymethyl furfural modified melamine glyoxal resin. The Journal of Adhesion, 2020, 96 (13): 1167- 1185.
doi: 10.1080/00218464.2018.1561291 |
|
Xie Y J, Hill C A S, Xiao Z F, et al. Water vapor sorption kinetics of wood modified with glutaraldehyde. Journal of Applied Polymer Science, 2010, 117 (3): 1674- 1682.
doi: 10.1002/app.32054 |
|
Zhang H, Guo M, Wu Q, et al. 2022 Efficient regeneration of mature castanopsis hystrix from in vitro stem explants. Frontiers in Plant Science, 13: 914652. |
[1] | 张轶媛,陈媛,李改云,吴义强. 木纤维表面醛基化改性及自胶合性能评价[J]. 林业科学, 2024, 60(8): 174-183. |
[2] | 龚珊珊,王思卿,刘涛,张晔,李傲,李建章. 高性能TEMPO功能化木粉-聚乙烯醇/锂铝水滑石复合材料的制备及性能[J]. 林业科学, 2024, 60(6): 111-119. |
[3] | 刘美宏,闫琦铭,訾龙博,雷亚芳,闫丽. 糠醇-环氧植物油复合改性毛白杨木材的物理力学性能[J]. 林业科学, 2024, 60(11): 149-159. |
[4] | 郝秀,李澍农,杨春梅,于文吉,余养伦. 外力作用下竹材不同尺度的断裂行为及机制[J]. 林业科学, 2023, 59(11): 118-123. |
[5] | 郭登康,沈晓双,杨昇,黄耀葛,李改云,储富祥. 水溶性乙烯基单体改性木材尺寸稳定性提高机制[J]. 林业科学, 2021, 57(7): 158-165. |
[6] | 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性[J]. 林业科学, 2021, 57(5): 165-175. |
[7] | 刘延鹤,周建波,傅万四,张彬,常飞虎,何文. 基于高频热压成型的竹集成材制备及力学性能评价[J]. 林业科学, 2020, 56(8): 131-140. |
[8] | 王菲彬,王昕萌,杨树明,姜桂超,阙泽利,周海宾. 国产杉木不同层板厚度对正交胶合木力学性能的影响[J]. 林业科学, 2020, 56(11): 168-175. |
[9] | 孟凡丹, 王超, 向琴, 余养伦, 于文吉. 疏解竹单板高温干热处理对竹基纤维复合材料性能的影响[J]. 林业科学, 2019, 55(9): 142-148. |
[10] | 安胜男, 马晓军, 朱礼智. 木粉增强P34HB生物复合材料的制备及其结构性能表征[J]. 林业科学, 2019, 55(3): 125-133. |
[11] | 徐康, 吕建雄, 刘君良, 吴义强, 李贤军. 浸渍后处理及干燥处理对木材树脂浸渍改性效果的影响[J]. 林业科学, 2018, 54(4): 84-92. |
[12] | 孙晓婷, 常亮, 唐启恒, 任一萍, 郭文静. 等温结晶对杨木纤维/聚乳酸复合材料性能的影响[J]. 林业科学, 2018, 54(3): 97-107. |
[13] | 刘苍伟, 苏明垒, 王思群, 王新洲, 赵荣军, 任海青, 王玉荣. 不同生长期毛竹材细胞壁力学性能与微纤丝角[J]. 林业科学, 2018, 54(1): 174-180. |
[14] | 罗瑜莹, 肖生苓, 李琛, 陈艳娜. 纤维多孔缓冲包装材料泡孔参数与其力学性能的关系[J]. 林业科学, 2017, 53(5): 116-124. |
[15] | 张杨, 马岩. 微米木纤维医用颈椎夹板的力学性能及有限元分析[J]. 林业科学, 2017, 53(4): 129-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||