|
范春楠, 韩士杰, 郭忠玲, 等. 吉林省森林植被固碳现状与速率. 植物生态学报, 2016, 40 (4): 341- 353.
|
|
Fan C N , Han S J , Guo Z L , et al. Present status and rate of carbon sequestration of forest vegetation in Jilin Province, Northeast China. Chinese Journal of Plant Ecology, 2016, 40 (4): 341- 353.
|
|
国家林业和草原局. 中国森林资源报告(2014—2018). 北京: 中国林业出版社, 2019.
|
|
State Forestry and Grassland Administration of China . Report of forest resources in China (2014—2018). Beijing: China Forestry Publishing House, 2019.
|
|
郭颖婕, 刘晓燕, 郭茂祖, 等. 植物抗性基因识别中的随机森林分类方法. 计算机科学与探索, 2012, 6 (1): 67- 77.
doi: 10.3778/j.issn.1673-9418.2012.01.005
|
|
Guo Y J , Liu X Y , Guo M Z , et al. Identification of plant resistance gene with random forest. Journal of Frontiers of Computer Science & Technology, 2012, 6 (1): 67- 77.
doi: 10.3778/j.issn.1673-9418.2012.01.005
|
|
焦燕, 胡海清. 黑龙江省森林植被碳储量及其动态变化. 应用生态学报, 2005, 16 (12): 2248- 2252.
doi: 10.3321/j.issn:1001-9332.2005.12.005
|
|
Jiao Y , Hu H Q . Carbon storage and its dynamics of forest vegetations in Heilongjiang Province. Chinese Journal of Applied Ecology, 2005, 16 (12): 2248- 2252.
doi: 10.3321/j.issn:1001-9332.2005.12.005
|
|
李奇, 朱建华, 冯源, 等. 中国森林乔木林碳储量及其固碳潜力预测. 气候变化研究进展, 2018, 14 (3): 287- 294.
|
|
Li Q , Zhu J H , Feng Y , et al. Carbon storage and carbon sequestration potential of the forest in China. Climate Change Research, 2018, 14 (3): 287- 294.
|
|
李婉华, 陈宏, 郭坤, 等. 基于随机森林算法的用电负荷预测研究. 计算机工程与应用, 2016, 52 (23): 236- 243.
doi: 10.3778/j.issn.1002-8331.1606-0203
|
|
Li W H , Chen H , Guo K , et al. Research on electrical load prediction based on random forest algorithm. Computer Engineering and Applications, 2016, 52 (23): 236- 243.
doi: 10.3778/j.issn.1002-8331.1606-0203
|
|
罗云建, 王效科, 张小全, 等. 中国森林生态系统生物量及其分配研究. 北京: 中国林业出版社, 2013.
|
|
Luo Y J , Wang X K , Zhang X Q , et al. Biomass and its allocation of forest ecosystems in China. Beijing: China Forestry Publishing House, 2013.
|
|
马晓哲, 王铮. 中国分省区森林碳汇量的一个估计. 科学通报, 2011, 56 (6): 433- 439.
|
|
Ma X Z , Wang Z . An estimation of forest carbon sinks by provinces and regions in China. Chinese Science Bulletin, 2011, 56 (6): 433- 439.
|
|
欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松-云冷杉混交林单木胸径生长预测. 北京林业大学学报, 2019, 41 (9): 9- 19.
|
|
Ou Q X , Lei X D , Shen C C , et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm. Journal of Beijing Forestry University, 2019, 41 (9): 9- 19.
|
|
王春梅, 邵彬, 王汝南. 东北地区两种主要造林树种生态系统固碳潜力. 生态学报, 2010, 30 (7): 1764- 1772.
|
|
Wang C M , Shao B , Wang R N . Carbon sequestration potential of ecosystem of two main tree species in Northeast China. Acta Ecologica Sinica, 2010, 30 (7): 1764- 1772.
|
|
郗婷婷, 李顺龙. 黑龙江省森林碳汇潜力分析. 林业经济问题, 2006, 26 (6): 519- 522.519-522, 526
doi: 10.3969/j.issn.1005-9709.2006.06.008
|
|
Xi T T , Li S L . Analysis of forestry carbon mitigation potential in Heilongjiang Province. Issues of Forestry Economics, 2006, 26 (6): 519- 522.519-522, 526
doi: 10.3969/j.issn.1005-9709.2006.06.008
|
|
许恩银, 王维枫, 聂影, 等. 中国林业碳贡献区域分布及潜力预测. 中国人口·资源与环境, 2020, 30 (5): 36- 45.
|
|
Xu E Y , Wang W F , Nie Y , et al. Regional distribution and potential forecast of China's forestry carbon contributions. China Population, Resources and Environment, 2020, 30 (5): 36- 45.
|
|
张煜星, 王雪军. 全国森林蓄积生物量模型建立和碳变化研究. 中国科学(生命科学), 2021, 51 (2): 199- 214.
|
|
Zhang Y X , Wang X J . Study on forest volume-to-biomass modeling and carbon storage dynamics in China. Scientia Sinica (Vitae), 2021, 51 (2): 199- 214.
|
|
中共中央国务院. 关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见. 中华人民共和国国务院公报, 2021, (31): 33- 38.
|
|
Opinions of the Central Committee of the CPC and the State Council . Carbon dioxide peaking and carbon neutrality in full and faithful implementation of the new development. Philosophy Chinese Full Text, 2021, (31): 33- 38.
|
|
周志华. 机器学习. 北京: 清华大学出版社, 2016.
|
|
Zhou Z H . Machine learning. Beijing: Tsinghua University Press, 2016.
|
|
Ashraf M I , Zhao Z Y , Bourque C P A , et al. Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology. Canadian Journal of Forest Research, 2013, 43 (12): 1162- 1171.
doi: 10.1139/cjfr-2013-0090
|
|
De'ath G . Boosted trees for ecological modeling and prediction. Ecology, 2007, 88 (1): 243- 251.
doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
|
|
Doelman J C , Stehfest E , van Vuuren D P , et al. Afforestation for climate change mitigation: potentials, risks and trade-offs. Global Change Biology, 2020, 26 (3): 1576- 1591.
doi: 10.1111/gcb.14887
|
|
Fang J , Chen A , Peng C , et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629
|
|
Fang J Y , Guo Z D , Hu H F , et al. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Global Change Biology, 2014, 20 (6): 2019- 2030.
doi: 10.1111/gcb.12512
|
|
Fernández-Martínez M , Vicca S , Janssens I A , et al. Addendum: nutrient availability as the key regulator of global forest carbon balance. Nature Climate Change, 2014, 4 (7): 643.
doi: 10.1038/nclimate2282
|
|
Gong P , Liu H , Zhang M N , et al. Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Science Bulletin, 2019, 64 (6): 370- 373.
doi: 10.1016/j.scib.2019.03.002
|
|
Hu H F , Wang S P , Guo Z D , et al. The stage-classified matrix models project a significant increase in biomass carbon stocks in China's forests between 2005 and 2050. Scientific Reports, 2015, 5, 11203.
doi: 10.1038/srep11203
|
|
Jevšenak J , Skudnik M . A random forest model for basal area increment predictions from national forest inventory data. Forest Ecology and Management, 2021, 479, 118601.
doi: 10.1016/j.foreco.2020.118601
|
|
Kuhn M , Johnson K . Applied predictive modeling. New York: Springer, 2013.
|
|
Lin B Q , Ge J M . Valued forest carbon sinks: how much emissions abatement costs could be reduced in China. Journal of Cleaner Production, 2019, 224, 455- 464.
doi: 10.1016/j.jclepro.2019.03.221
|
|
Lun F , Liu Y , He L , et al. Life cycle research on the carbon budget of the Larix principis-rupprechtii plantation forest ecosystem in North China. Journal of Cleaner Production, 2018, 177, 178- 186.
doi: 10.1016/j.jclepro.2017.12.126
|
|
Mina M , Huber M O , Forrester D I , et al. Multiple factors modulate tree growth complementarity in Central European mixed forests. Journal of Ecology, 2018, 106 (3): 1106- 1119.
doi: 10.1111/1365-2745.12846
|
|
Ni J . Carbon storage in Chinese terrestrial ecosystems: approaching a more accurate estimate. Climatic Change, 2013, 119 (3/4): 905- 917.
|
|
Ou Q X , Lei X D , Shen C C . Individual tree diameter growth models of larch-spruce-fir mixed forests based on machine learning algorithms. Forests, 2019, 10 (2): 187.
doi: 10.3390/f10020187
|
|
Prasad A M , Iverson L R , Liaw A . Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems, 2006, 9 (2): 181- 199.
doi: 10.1007/s10021-005-0054-1
|
|
Qi G , Chen H , Zhou L , et al. Carbon stock of larch plantations and its comparison with an old-growth forest in northeast China. Chinese Geographical Science, 2016, 26 (1): 10- 21.
doi: 10.1007/s11769-015-0772-z
|
|
Qiu Z X , Feng Z K , Song Y N , et al. Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment. Journal of Cleaner Production, 2020, 252, 119715.
doi: 10.1016/j.jclepro.2019.119715
|
|
Richards K R , Stokes C . A review of forest carbon sequestration cost studies: a dozen years of research. Climatic Change, 2004, 63 (1/2): 1- 48.
doi: 10.1023/B:CLIM.0000018503.10080.89
|
|
Sharma T , Kurz W A , Stinson G , et al. A 100-year conservation experiment: impacts on forest carbon stocks and fluxes. Forest Ecology and Management, 2013, 310, 242- 255.
doi: 10.1016/j.foreco.2013.06.048
|
|
Stinson G , Kurz W A , Smyth C E , et al. An inventory-based analysis of Canada's managed forest carbon dynamics, 1990 to 2008. Global Change Biology, 2011, 17 (6): 2227- 2244.
doi: 10.1111/j.1365-2486.2010.02369.x
|
|
Tang X L , Zhao X , Bai Y F , et al. Carbon pools in China's terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4021- 4026.
doi: 10.1073/pnas.1700291115
|
|
Wei S G , Dai Y J , Liu B Y , et al. A China data set of soil properties for land surface modeling. Journal of Advances in Modeling Earth Systems, 2013, 5 (2): 212- 224.
doi: 10.1002/jame.20026
|