林业科学 ›› 2022, Vol. 58 ›› Issue (2): 159-170.doi: 10.11707/j.1001-7488.20220216
王嘉1,2,梁晓洁1,高暝1,吴立文1,赵耘霄1,汪阳东1,黄世清3,张永志3,傅火勇3,陈益存1,*
收稿日期:2020-12-21
出版日期:2022-02-25
发布日期:2022-04-26
通讯作者:
陈益存
基金资助:Jia Wang1,2,Xiaojie Liang1,Ming Gao1,Liwen Wu1,Yunxiao Zhao1,Yangdong Wang1,Shiqing Huang3,Yongzhi Zhang3,Huoyong Fu3,Yicun Chen1,*
Received:2020-12-21
Online:2022-02-25
Published:2022-04-26
Contact:
Yicun Chen
摘要:
目的: 油桐枯萎病是一种土传的根部真菌病害,严重危害油桐主栽品种三年桐,极大地限制了其规模化栽培。而同属的千年桐具有抗枯萎病能力,其根部防御作用机制的研究可以为抗枯萎病防治和抗性育种提供思路。方法: 利用乙酸乙酯萃取法获得三年桐和千年桐根部提取物;基于高效液相色谱和串联质谱检测病原菌侵染后三年桐和千年桐根部代谢物成分;利用Illumina HiSeqTM2000、检测病原菌侵染过程中三年桐和千年桐根部基因表达变化规律和通路变化,并利用实时定量PCR试验验证基因表达规律;利用R软件包等生物信息学方法进行数据分析。结果: 1) 与三年桐相比,千年桐根部提取物对油桐枯萎病菌的生长有明显的抑制作用;2) 病原菌侵染后千年桐根部产生的芒柄花苷、橙皮苷等异黄酮和黄烷酮化合物是三年桐的1 000倍以上;3) 病原菌侵染后千年桐根部负责黄酮类化合物生物合成的上游关键通路“苯丙烷类生物合成途径”显著富集;4) 苯丙烷类生物合成途径中有4个中心基因,包括4-香豆酸CoA连接酶、β-D-木糖苷酶、β-葡萄糖苷酶和过氧化物酶N1,通过实时定量PCR试验验证在病原菌侵染早期上调表达,且与其他1 625基因具有极高的相关关系,激活苯丙烷类生物合成途径从而产生黄酮类化合物抵御病原菌入侵。结论: 通过代谢组和转录组联合分析,揭示了千年桐根部苯丙烷类生物合成途径在枯萎病病原菌入侵后发生响应,产生芒柄花苷、橙皮苷等黄酮类化合物,从而抵御病原菌入侵。
中图分类号:
王嘉,梁晓洁,高暝,吴立文,赵耘霄,汪阳东,黄世清,张永志,傅火勇,陈益存. 千年桐根部黄酮类化合物生物合成对枯萎病菌侵染的响应[J]. 林业科学, 2022, 58(2): 159-170.
Jia Wang,Xiaojie Liang,Ming Gao,Liwen Wu,Yunxiao Zhao,Yangdong Wang,Shiqing Huang,Yongzhi Zhang,Huoyong Fu,Yicun Chen. Response of Flavonoids Biosynthesis in Roots of Vernicia montana to Fusarium Wilt Infection[J]. Scientia Silvae Sinicae, 2022, 58(2): 159-170.
表1
千年桐根部Fof-1侵染后32种上调黄酮类化合物的信息"
| 序号 No. | 化合物名称 Compound name | 物质类别 Category | 变量投影 重要性VIP | 差异倍数 Fold change |
| Ver0746 | 芒柄花苷Formononetin 7-O-glucoside (Ononin) | 异黄酮Isoflavone | 2.237 | 2 026.26 |
| Ver0717 | 橙皮苷Hesperetin 7-rutinoside (Hesperidin) | 黄烷酮Flavanone | 2.150 | 1 185.52 |
| Ver0769 | 高圣草酚Homoeriodictyol | 黄烷酮Flavanone | 1.217 | 2.08 |
| Ver0752 | 枸橘苷Isosakuranetin-7-neohesperidoside (Poncirin) | 黄烷酮Flavanone | 2.225 | 13.06 |
| Ver0725 | 新橙皮苷Hesperetin 7-O-neohesperidoside | 黄烷酮Flavanone | 2.264 | 11.38 |
| Ver0722 | 柚皮素-7-O-葡萄糖苷Naringenin 7-O-glucoside (Prunin) | 黄烷酮Flavanone | 1.032 | 2.51 |
| Ver0712 | 橙皮素O-丙二酰基己糖苷Hesperetin O-malonylhexoside | 黄烷酮Flavanone | 1.631 | 8.80 |
| Ver0711 | 柚皮素7-O-新橘皮糖苷 Naringenin 7-O-neohesperidoside (Naringin) | 黄烷酮Flavanone | 1.329 | 5.24 |
| Ver0726 | 麦黄酮7-O-己糖苷Tricin 7-O-hexoside | 黄酮Flavone | 1.907 | 12.70 |
| Ver0772 | 麦黄酮Tricin | 黄酮Flavone | 1.294 | 2.43 |
| Ver0714 | 麦黄酮5-O-芸香糖苷Tricin 5-O-rutinoside | 黄酮Flavone | 1.261 | 3.42 |
| Ver0684 | 麦黄酮O-葡萄糖二酸Tricin O-saccharic acid | 黄酮Flavone | 1.065 | 2.54 |
| Ver0319 | 麦黄酮O-香草酰己糖苷Tricin O-vanilloylhexoside | 黄酮Flavone | 1.991 | 27.63 |
| Ver0641 | 金合欢素O-乙酰己糖苷Acacetin O-acetyl hexoside | 黄酮Flavone | 1.611 | 7.19 |
| Ver0704 | 金圣草黄素O-乙酰基己糖苷 Chrysoeriol O-acetylhexoside | 黄酮Flavone | 1.244 | 3.32 |
| Ver0706 | 芹菜素7-O-新橘皮糖苷 Apigenin 7-O-neohesperidoside (Rhoifolin) | 黄酮Flavone | 1.007 | 3.29 |
| Ver0330 | 氧甲基金圣草黄素5-O-己糖苷 O-methylChrysoeriol 5-O-hexoside | 黄酮Flavone | 1.150 | 2.86 |
| Ver0733 | 阿福豆苷Kaempferol 3-O-rhamnoside (Kaempferin) | 黄酮醇Flavonol | 1.387 | 4.35 |
| Ver0663 | 二氢杨梅Dihydromyricetin | 黄酮醇Flavonol | 1.671 | 9.71 |
| Ver0681 | 杨梅苷Myricetin 3-O-rhamnoside (Myricitrin) | 黄酮醇Flavonol | 1.471 | 5.15 |
| Ver0702 | 三叶豆甙Kaempferol 3-O-galactoside (Trifolin) | 黄酮醇Flavonol | 1.640 | 8.54 |
| Ver0284 | 异鼠李素5-O-己糖苷Isorhamnetin 5-O-hexoside | 黄酮醇Flavonol | 1.239 | 3.58 |
| Ver0720 | 紫云英苷Kaempferol 3-O-glucoside (Astragalin) | 黄酮醇Flavonol | 2.104 | 15.36 |
| Ver0773 | 丁香亭Syringetin | 黄酮醇Flavonol | 1.513 | 4.06 |
| Ver0197 | 天竺葵色素苷Pelargonin | 花青素Anthocyanins | 1.244 | 3.32 |
| Ver0196 | 锦葵色素苷Malvidin 3, 5-diglucoside (Malvin) | 花青素Anthocyanins | 1.350 | 4.13 |
| Ver0178 | 花青素苷Cyanidin 3, 5-O-diglucoside (Cyanin) | 花青素Anthocyanins | 1.418 | 3.92 |
| Ver0206 | 矢车菊素3-O-芸香糖苷 Cyanidin 3-O-rutinoside (Keracyanin) | 花青素Anthocyanins | 1.776 | 10.40 |
| Ver0650 | 原花青素B2 Procyanidin B2 | 原花青素Proanthocyanidins | 1.330 | 3.87 |
| Ver0636 | 原花青素B3 Procyanidin B3 | 原花青素Proanthocyanidins | 1.305 | 3.72 |
| Ver0276 | 芥子酰羟基香豆素 N-sinapoyl hydroxycoumarin | 香豆素及其衍生物Coumarins | 1.603 | 9.04 |
| Ver0730 | 7-羟基香豆素鼠李糖苷 7-hydroxycoumarin-β-rhamnoside | 香豆素及其衍生物Coumarins | 1.528 | 3.46 |
表2
千年桐根部苯丙烷类生物合成途径和黄酮类生物合成途径的差异表达基因信息"
| 编码基因代码 Gene code | 编码蛋白功能注释 Coding protein annotation | KEGG号 KEGG No. |
| 苯丙烷类生物合成途径Phenylpropanoidbiosynthesis | ||
| comp160842_c0 | 2-氧戊二酸依赖性双加氧酶AOP1 2-oxoglutarate-dependent dioxygenase AOP1 | K06892 |
| comp164220_c0 | 4-香豆酸:CoA连接酶-7 (4CL-like 7) 4-coumarate: CoA ligase-like 7 (4CL-like 7) | K01904 |
| comp158232_c0 | 咖啡酰-CoA O-甲基转移酶(CCoAOMT At4g26220)caffeoyl-CoA O-methyltransferase | K00588 |
| comp158238_c0 | 咖啡酰-CoA O-甲基转移酶(CCoAOMT At4g26220)caffeoyl-CoA O-methyltransferase | K00588 |
| comp148821_c0 | 木质素形成阴离子过氧化物酶Lignin-forming anionic peroxidase-like | K00430 |
| comp153555_c0 | 木质素形成阴离子过氧化物酶Lignin-forming anionic peroxidase-like | K00430 |
| comp162769_c1 | 木质素形成阴离子过氧化物酶Lignin-forming anionic peroxidase-like | K00430 |
| comp149644_c0 | 过氧化物酶Peroxidase (POX) | K00430 |
| comp156697_c0 | 过氧化物酶Peroxidase (POX) | K00430 |
| comp156748_c0 | 过氧化物酶Peroxidase (POX) | K00430 |
| comp178040_c0 | 过氧化物酶Peroxidase (POX) | K00430 |
| comp48864_c0 | 过氧化物酶Peroxidase (POX) | K00430 |
| comp57178_c0 | 过氧化物酶Peroxidase (POX) | K00430 |
| comp152363_c0 | 过氧化物酶-12 Peroxidase 12-like (POX 12-like) | K00430 |
| comp59499_c0 | 过氧化物酶-15 Peroxidase 15-like (POX 15-like) | K00430 |
| comp160671_c0 | 过氧化物酶-4 Peroxidase 4 (POX 4) | K00430 |
| comp162281_c0 | 过氧化物酶-4 Peroxidase 4 (POX 4) | K00430 |
| comp158600_c0 | 过氧化物酶-A2 Peroxidase A2-like (POX A2-like) | K00430 |
| comp161309_c0 | 过氧化物酶-A2 Peroxidase A2-like (POX A2-like) | K00430 |
| comp115360_c0 | 过氧化物酶N1 Peroxidase N1 (POX N1) | K00430 |
| comp166753_c0 | 丝氨酸羧肽酶-8 Serine carboxypeptidase-like 18 (SCP-like 18) | K09756 |
| comp166459_c0 | 丝氨酸羧肽酶-7 Serine carboxypeptidase-like 7 (SCP-like 7) | K09756 |
| comp162378_c0 | 反式肉桂酸4-单加氧酶Trans-cinnamate 4-monooxygenase | K00487 |
| comp48140_c0 | β-D-葡萄糖基番红花素β-1, 6-葡萄糖基转移酶β-D-glucosyl crocetin beta-1, 6-glucosyltransferase-like | K12356 |
| comp163132_c0 | β-D-木糖苷酶β-D-xylosidase (β-D-XYL) | K05349 |
| comp62881_c0 | β-葡萄糖苷酶β-glucosidase (BGL) | K05350 |
| comp147485_c0 | β-葡萄糖苷酶18 β-glucosidase 18 (BGL 18) | K05350 |
| comp147998_c0 | β-葡萄糖苷酶18 β-glucosidase 18 (BGL 18) | K05350 |
| comp165691_c0 | β-葡萄糖苷酶41 β-glucosidase 41 (BGL 41) | K01188 |
| comp161549_c0 | β-葡萄糖苷酶44 β-glucosidase 44 (BGL 44) | K05350 |
| 黄酮类生物合成途径Flavonoids biosynthesis | ||
| comp145399_c0 | 黄酮类3-单加氢酶Flavonoid 3-monooxygenase | K05280 |
| comp151069_c0 | 黄酮类3-单加氢酶Flavonoid 3-monooxygenase | K05280 |
| comp158232_c0 | 咖啡酰-CoA O-甲基转移酶(CCoAOMT At4g26220)caffeoyl-CoA O-methyltransferase | K00588 |
| comp158238_c0 | 咖啡酰-CoA O-甲基转移酶(CCoAOMT At4g26220)caffeoyl-CoA O-methyltransferase | K00588 |
| comp162378_c0 | 反式肉桂酸4-单加氧酶Trans-cinnamate 4-monooxygenase | K00487 |
| comp163230_c1 | 黄酮醇合酶Flavonol synthase | K05278 |
| comp163517_c0 | 柚皮素3-双加氧酶Naringenin 3-dioxygenase | K00475 |
| 方嘉兴, 何方, 姚小华. 中国油桐. 北京: 中国林业出版社, 2017. | |
| Fang J X , He F , Yao X H . Chinese tung oil tree. Beijing: China Forestry Publishing House, 2017. | |
| 杨素素, 高暝, 朱慧萍, 等. 三年桐、千年桐感染枯萎病病原菌后的生理反应. 林业科学研究, 2014, 27 (6): 752- 757. | |
| Yang S S , Gao M , Zhu H P , et al. Physiological response of Vernicia fordi and V. montana upon inoculation with Fusarium oxysporum. Forest Research, 2014, 27 (6): 752- 757. | |
| 于利, 张彦, 陈爱国, 等. 烟草苯丙烷代谢途径关键酶肉桂酸-4-羟化酶, 4-香豆酸-辅酶A基因的分离及表达特性分析. 植物遗传资源学报, 2014, 15 (5): 1067- 1073. | |
| Li Y , Zhang Y , Chen A G , et al. Isolation and expression analysis of Ntc4h and Nt4cl encoding the key enzymes of phenylalanine metabolism pathway in tobacco. Journal of Plant Genetic Resources, 2014, 15 (5): 1067- 1073. | |
|
Bai Q X , Duan B B , Ma J C , et al. Coexpression of PalbHLH 1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content. Frontiers in Plant Science, 2020, 10, 1772.
doi: 10.3389/fpls.2019.01772 |
|
| Chen X H , Su W L , Zhang H , et al. Fraxinus mandshurica 4-coumarate-CoA ligase 2 enhances drought and osmotic stress tolerance of tobacco by increasing coniferyl alcohol content. Plant Physiology & Biochemistry, 2020, 155, 697- 708. | |
|
Chen X H , Wang H T , Li X Y , et al. Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology, 2019, 19 (1): 231.
doi: 10.1186/s12870-019-1812-0 |
|
| Chen Y C , Yin H F , Gao M , et al. Comparative transcriptomics atlases reveals different gene expression pattern related to Fusarium wilt disease resistance and susceptibility in two Vernicia species. Frontiers in Plant Science, 2016, 7, 1974. | |
|
Chen Y H , Zhang R P , Song Y M , et al. RRLC-MS/MS-based metabonomics combined with in-depth analysis of metabolic correlation network: finding potential biomarkers for breast cancer. Analyst, 2009, 134 (10): 2003- 2011.
doi: 10.1039/b907243h |
|
| Dean R , Van Kan J A , Pretorius Z A , et al. The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 2012, 13 (7): 414- 430. | |
|
Du Y G , Chu H , Wang M F , et al. Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in Sorghum. Journal of Experimental Botany, 2010, 61 (4): 983- 994.
doi: 10.1093/jxb/erp364 |
|
|
Fang X Y , Dong Y R , Xie Y Y , et al. Effects of β-glucosidase and α-rhamnosidase on the contents of flavonoids, ginkgolides, and aroma components in ginkgo tea drink. Molecules, 2019, 24 (10): 2009.
doi: 10.3390/molecules24102009 |
|
|
Gayatridevi S , Jayalakshmi S K , et al. Salicylic acid is a modulator of catalase isozymes in chickpea plants infected with Fusarium oxysporum f. sp. ciceri. Plant Physiology Biochemistry, 2012, 52, 154- 161.
doi: 10.1016/j.plaphy.2011.12.005 |
|
| Gill U S , Uppalapati S R , Gallego-Giraldo L , et al. Metabolic flux towards the (iso)flavonoid pathway in lignin modified alfalfa lines induces resistance against Fusarium oxysporumf. sp. medicaginis.. Plant Cell and Environment, 2018, 41 (9): 1997- 2007. | |
|
He Y Z , Han J W , Liu R S , et al. Integrated transcriptomic and metabolomic analyses of a wax deficient citrus mutant exhibiting jasmonic acid-mediated defense against fungal pathogens. Horticulture Research, 2018, 5 (1): 43.
doi: 10.1038/s41438-018-0051-0 |
|
|
Hou J , Wu Q M , Zuo T , et al. Genome-wide transcriptomic profiles reveal multiple regulatory responses of poplar to Lonsdalea quercina infection. Trees, 2016, 30 (4): 1389- 1402.
doi: 10.1007/s00468-016-1376-7 |
|
|
Karre S , Kumar A , Yogendra K , et al. HvWRKY23 regulates flavonoid glycoside and hydroxycinnamic acid amide biosynthetic genes in barley to combat Fusarium head blight. Plant Molecular Biology, 2019, 100 (6): 591- 605.
doi: 10.1007/s11103-019-00882-2 |
|
| Król P , Igielski R , Pollmann S , et al. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f. sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. Journal of Plant Physiology, 2015, 179 (1): 122- 132. | |
| Liu L , He X J , Zhang Z M , et al. Cloning and Expression of the serine carboxypeptidase gene in Zea mays and its antifungal activity against Rhizoctonia solani. Journal of Life Sciences, 2013, 7 (2): 123- 130. | |
|
Li S S , Chang Y , Li B , et al. Functional analysis of 4-coumarate: CoA ligase from Dryopteris fragrans in transgenic tobacco enhances lignin and flavonoids. Genetics and Molecular Biology, 2020, 43 (2): e20180355.
doi: 10.1590/1678-4685-gmb-2018-0355 |
|
|
Li Y , Li G D , Yu H T , et al. Antifungal activities of isoflavonoids from Uromyces striatus infected alfalfa. Chem Biodivers, 2018, 15 (12): e1800407.
doi: 10.1002/cbdv.201800407 |
|
|
Mageroy M H , Parent G , Germanos G , et al. Expression of the β-glucosidase gene Pgβglu-1 underpins natural resistance of white spruce against spruce budworm. The Plant Journal, 2015, 81, 68- 80.
doi: 10.1111/tpj.12699 |
|
|
Tang N , Chen N , Hu N , et al. Comparative metabonomics and transcriptomic profiling reveal the mechanism of fruit quality deterioration and the resistance of citrus fruit against Penicillium digitatum. Postharvest Biology and Technology, 2018, 145, 61- 73.
doi: 10.1016/j.postharvbio.2018.06.007 |
|
|
Thévenot E A , Roux A , Xu Y , et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. Journal of Proteome Research, 2015, 14, 3322- 3335.
doi: 10.1021/acs.jproteome.5b00354 |
|
|
Wagner A , Tobimatsu Y , Phillips L , et al. CCoAOMT suppression modifies lignin composition in Pinus radiata. Plant Journal, 2011, 67, 119- 129.
doi: 10.1111/j.1365-313X.2011.04580.x |
|
|
Xiong J S , Balland-Vanney M , Xie Z P , et al. Molecular cloning of a bifunctional beta-xylosidase/alpha-L-arabinosidase from alfalfa roots: heterologous expression in Medicago truncatula and substrate specificity of the purified enzyme. Journal of Experimental Botany, 2007, 58 (11): 2799- 2810.
doi: 10.1093/jxb/erm133 |
|
|
Yang F , Li M Q , Xin Y Y , et al. Effects of flavonoids from potato-onion on Fusarium wilt fungus of tomato. Allelopathy Journal, 2019, 47 (1): 119- 126.
doi: 10.26651/allelo.j/2019-47-1-1225 |
|
|
Yang Y , Jiang R , Wang H Y , et al. StPOPA, encoding an anionic peroxidase, enhances potato resistance against Phytophthora infestans. Molecular Breeding, 2020, 40 (2): 16.
doi: 10.1007/s11032-019-1093-1 |
|
|
Yin L H , Zou Y J , Ke X W , et al. Phenolic responses of resistant and susceptible Malus plants induced by Diplocarpon mali. Scientia Horticulturae, 2013a, 164, 17- 23.
doi: 10.1016/j.scienta.2013.08.037 |
|
| Yin L , Zou Y J , Li M J , et al. Resistance of Malus plants to Diplocarpon mali infection is associated with the antioxidant system and defense signaling pathways. Physiological & Molecular Plant Pathology, 2013b, 84, 146- 152. | |
| Zhao L , Phuong L T , Luan M T , et al. A class Ⅲ peroxidase PRX34 is a component of disease resistance in Arabidopsis. Journal of General Plant Pathology, 2019, 85 (6): 1- 8. |
| [1] | 谷战英, 杨若楠, 陈昊. 油桐叶肉细胞原生质体分离及瞬时转化体系的建立[J]. 林业科学, 2018, 54(1): 46-53. |
| [2] | 万盼, 熊兴政, 黄小辉, 邬静淳, 欧阳, 邓雪梅, 刘芸. 2种农药胁迫对油桐幼苗叶绿素荧光特性及生长的影响[J]. 林业科学, 2016, 52(7): 22-29. |
| [3] | 魏琦, 王淑英, 汤锋, 张华新, 喻谨, 岳永德. 高效液相色谱法同时测定竹叶中13种黄酮类化合物[J]. 林业科学, 2015, 51(8): 81-87. |
| [4] | 陈昊, 谭晓风. 基于油脂合成期油桐种仁转录组数据的α-亚麻酸代谢途径解析[J]. 林业科学, 2015, 51(3): 41-48. |
| [5] | 孙颖, 谭晓风, 罗敏, 李建安. 油桐花芽2个不同发育时期转录组分析[J]. 林业科学, 2014, 50(5): 70-74. |
| [6] | 崔琴琴;韩小娇;陈益存;占志勇;林丽媛;汪阳东. 油桐生物素羧基载体蛋白编码基因VfBCCP的克隆与表达分析[J]. 林业科学, 2012, 48(8): 155-160. |
| [7] | 鲍绍文;陶万强;田呈明. 黄栌与大丽轮枝菌互作的组织病理学变化[J]. 林业科学, 2011, 47(2): 58-65. |
| [8] | 黄志刚;李锋瑞 曹云 欧阳志云 李锡泉 田育新 王中建 柳辉. 南方红壤丘陵区杜仲和油桐人工林水土保持效应的比较[J]. 林业科学, 2007, 43(8): 8-14. |
| [9] | 程水源 王燕 李俊凯 顾曼如 束怀瑞. 银杏叶黄酮类化合物合成代谢规律的研究[J]. 林业科学, 2002, 38(5): 60-63. |
| [10] | 宋漳 林毓银. 佛肚竹枯萎病的研究[J]. 林业科学, 2001, 37(zk): 181-184. |
| [11] | 程水源 顾曼如 束怀瑞. 银杏叶黄酮研究进展[J]. 林业科学, 2000, 36(6): 110-115. |
| [12] | 范义荣,毛迎春,夏逍鸿,卢龙高,吴秋良. 油桐育种程序系列研究[J]. 林业科学, 1997, 33(5): 403-411. |
| [13] | 陈守常 肖育贵. 油桐根腐病发生动态和预测研究[J]. , 1990, 26(3): 219-226. |
| [14] | 金开璇 汪跃 张长海. 油桐带化病中发现的类细菌(BLO)[J]. , 1989, 25(6): 575-576. |
| [15] | 陈守常 肖育贵. 油桐根腐病病原菌的研究[J]. , 1989, 25(2): 113-119. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||