 
		林业科学 ›› 2021, Vol. 57 ›› Issue (5): 165-175.doi: 10.11707/j.1001-7488.20210516
贾茹1,2,孙海燕1,2,王玉荣1,2,*,汪睿1,2,赵荣军1,任海青1
收稿日期:2019-12-25
									
				
									
				
									
				
											出版日期:2021-05-25
									
				
											发布日期:2021-07-09
									
			通讯作者:
					王玉荣
												基金资助:Ru Jia1,2,Haiyan Sun1,2,Yurong Wang1,2,*,Rui Wang1,2,Rongjun Zhao1,Haiqing Ren1
Received:2019-12-25
									
				
									
				
									
				
											Online:2021-05-25
									
				
											Published:2021-07-09
									
			Contact:
					Yurong Wang   
												摘要:
目的: 阐明杉木无性系间幼龄材的力学性能差异,筛选力学性能优良的无性系,探究影响杉木幼龄材力学性能的微观结构特征,为杉木优良无性系选育、杉木木材加工利用和加工工艺研发提供科学依据。方法: 以福建洋口国有林场杉木无性系品种比对示范试验林中2个经国家认定的杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材为试验材料,各采伐8株标准株作为样木。按照国标加工、制备主要力学性能试件,测定木材抗弯强度、抗弯弹性模量、顺纹抗压强度和硬度,应用光学显微图像分析系统、X射线衍射、傅里叶变换红外显微成像等技术观测样品显微构造并测量微纤丝角、结晶度和木质素含量。采用单因素方差分析进行数据处理,系统分析2个杉木无性系幼龄材微观结构与力学性能的相关性。结果: 杉木无性系‘洋020’早材管胞形态与‘洋061’较为接近,但年轮晚材区比‘洋061’宽,管胞壁较厚,管胞腔较小,壁腔比较‘洋061’约大25%。‘洋020’的平均微纤丝角为12.06°,较‘洋061’(14.97°)约小18%;平均结晶度为39.73%,较‘洋061’(35.88%)高11%左右;木质素含量特征峰高比的平均值较‘洋061’高8%左右;平均抗弯强度、抗弯弹性模量、顺纹抗压强度和硬度分别为51.36 MPa、10.18 GPa、30.27 MPa和1 497 N,较‘洋061’的平均抗弯强度(42.56 MPa)、抗弯弹性模量(8.98 GPa)、顺纹抗压强度(27.20 MPa)和硬度(1 391 N)分别高21%、13%、11%和8%。结论: 除结晶度外,杉木无性系‘洋020’与‘洋061’幼龄材在解剖构造参数、微纤丝角和木质素等微观结构因子方面均存在显著性差异,‘洋020’幼龄材的抗弯、抗压和硬度等力学性能均高于‘洋061’。杉木无性系幼龄材管胞壁厚度、壁腔比等解剖构造参数以及木质素含量与力学性能呈正相关,细胞壁纤维素微纤丝角与力学性能呈负相关,这些微观结构因子的协同作用影响其力学性能。评价杉木无性系幼龄材木材力学品质性状,解剖构造参数和微纤丝角是最主要的判断依据。
中图分类号:
贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性[J]. 林业科学, 2021, 57(5): 165-175.
Ru Jia,Haiyan Sun,Yurong Wang,Rui Wang,Rongjun Zhao,Haiqing Ren. Relativity of Microstructures and Mechanical Properties of Juvenile Woods of 10-Year-Old New Chinese Fir Clones 'Yang 020' and 'Yang 061'[J]. Scientia Silvae Sinicae, 2021, 57(5): 165-175.
 
												
												表1
2个杉木无性系木材解剖构造参数①"
| 无性系名称 Name of clones | 晚材Latewood | 早材Earlywood | |||||||||||
| 双壁厚 Double-wall thickness | 腔径 Lumen diameter | 壁腔比 Wall-lumen ratio | 双壁厚 Double-wall thickness | 腔径 Lumen diameter | 壁腔比 Wall-lumen ratio | ||||||||
| 平均值 Mean/μm | 标准差 Standard deviation | 平均值 Mean/μm | 标准差 Standard deviation | 平均值 Mean/μm | 标准差 Standard deviation | 平均值 Mean/μm | 标准差 Standard deviation | ||||||
| 洋061 Yang 061 | 4.93* | 1.13 | 21.20* | 8.97 | 0.23 | 3.20 | 0.64 | 27.48* | 8.67 | 0.12 | |||
| 洋020 Yang 020 | 5.39* | 1.16 | 18.55* | 6.89 | 0.29 | 3.41 | 0.84 | 25.34* | 5.59 | 0.14 | |||
 
												
												表3
针叶材细胞壁聚合物的傅里叶红外特征峰归属"
| 波数Wavenumber/cm-1 | 吸收峰归属Peaks assignment | 
| 1 736 | 非共轭羰基C=O伸缩振动 The stretching vibration of C=O | 
| 1 600 | 芳环骨架振动和羰基C=O伸缩振动 The vibration of aromatic ring and stretching vibration of C=O | 
| 1 508 | 苯环骨架伸展振动 The extended vibration of benzene ring skeleton | 
| 1 452 | C—H弯曲振动,苯环碳骨架振动 The bending vibration of C—H and vibration of benzene ring skeleton | 
| 1 424 | CH2剪式振动,弯曲振动 The scissoring vibration and bending vibration of CH2 | 
| 1 264 | 苯环氧键伸缩振动 The stretching vibration of benzene epoxy bond | 
| 1 232 | 芳香碳与氧连接键的振动 The vibration of the bond between aromatic carbon and oxygen | 
 
												
												表5
2个杉木无性系木材主要力学性能统计分析"
| 力学性质 Mechanics | 无性系名称 Names of clones | 强度 Strength | 标准差 Standard deviation | 变异系数 Coefficient of variation(%) | 方差分析 ANOVA | 
| 抗弯强度 MOR | 洋020 Yang 020 | 51.36 MPa | 5.99 | 11.66 | * | 
| 洋061 Yang 061 | 42.56 MPa | 5.84 | 13.72 | * | |
| 抗弯弹性模量 MOE | 洋020 Yang 020 | 10.18 GPa | 1.20 | 11.73 | * | 
| 洋061 Yang 061 | 8.98 GPa | 1.11 | 12.34 | * | |
| 顺纹抗压强度 Compressive strength parallel to grain | 洋020 Yang 020 | 30.27 MPa | 2.14 | 7.10 | * | 
| 洋061 Yang 061 | 27.20 MPa | 2.65 | 9.75 | * | |
| 硬度 Hardness | 洋020 Yang 020 | 1 497 N | 134 | 9.60 | * | 
| 洋061 Yang 061 | 1 391 N | 252 | 18.82 | * | 
 
												
												表6
2个杉木无性系木材不同切面硬度统计分析"
| 无性系名称 Name of clones | 端面硬度Transverse surface | 径面硬度Radial surface | 弦面硬度Tangential surface | |||||
| 均值 Mean/N | 变异系数 Coefficient of variation(%) | 均值 Mean/N | 变异系数 Coefficient of variation(%) | 均值 Mean/N | 变异系数 Coefficient of variation(%) | |||
| 洋020 Yang 020 | 2 125 | 10.36 | 975* | 15.49 | 1 391* | 18.95 | ||
| 洋061 Yang 061 | 2 090 | 14.95 | 885* | 19.63 | 1 197* | 15.84 | ||
 
												
												表7
2个杉木无性系微观结构与力学性能指标"
| 无性系名称 Names of clones | 微观结构Microstructures | 力学性能Mechanical properties | |||||||
| 晚材双壁厚 Double-wall thickness of latewood/μm | 晚材壁腔比 Wall-lumen ratio of latewood | 微纤丝角 Microfibril angle/(°) | 结晶度 Crystallinity(%) | 抗弯强度 MOR/MPa | 弹性模量 MOE/GPa | 顺纹抗压强度 Compressive strength parallel to grain/MPa | 硬度 Hardness/N | ||
| 洋020 Yang 020 | 5.39±1.16 | 0.29 | 12.06±4.13 | 39.73±4.58 | 51.36±5.99 | 10.18±1.20 | 30.27±2.14 | 1 497±134 | |
| 洋061 Yang 061 | 4.93±1.13 | 0.23 | 14.79±4.08 | 35.88±4.36 | 42.56±5.84 | 8.98±1.11 | 27.20±2.65 | 1 391±252 | |
| 陈美玲, 张双燕, 王传贵. 密粘褶菌生物性降解对杉木木材性质的影响. 安徽农业大学学报, 2016, 43 (3): 378- 382. | |
| Chen M L , Zhang S Y , Wang C G . Wood properties of Chinese-fir after biological degradation by Gloeophyllum trabeum(Pers.) Murrill. Journal of Anhui Agricultural University, 2016, 43 (3): 378- 382. | |
| 成俊卿, 杨家驹, 刘鹏. 中国木材志. 北京: 中国林业出版社, 1992: 58 | |
| Cheng J Q , Yang J J , Liu P . China's timber records. Beijing: China Forestry Publishing House, 1992: 58 | |
| 丁涛, 贝政廷, 李源.  杉木热处理材结晶度及力学性能的研究. 林业科技开发, 2012, 26 (2): 23- 26. doi: 10.3969/j.issn.1000-8101.2012.02.007 | |
| Ding T ,  Bei Z T ,  Li Y .  Influence of heat treatment on crystallinity and mechanical properties of Chinese fir lumber. China Forestry Science and Technology, 2012, 26 (2): 23- 26. doi: 10.3969/j.issn.1000-8101.2012.02.007 | |
| 段爱国, 张雄清, 张建国, 等. 21年生杉木无性系生长与遗传评价. 林业科学研究, 2014, 27 (5): 672- 676. | |
| Duan A G , Zhang X Q , Zhang J G , et al. Growth and genetic evaluation of 21-year-old Chinese fir clonal plantation. Forest Research, 2014, 27 (5): 672- 676. | |
| 范文俊, 涂登云, 彭冲, 等.  热处理对毛白杨木材力学性能的影响机理. 东北林业大学学报, 2015, 43 (10): 88- 91. doi: 10.3969/j.issn.1000-5382.2015.10.018 | |
| Fan W J ,  Tu D Y ,  Peng C , et al.  Influence of heat treatment on mechanical properties of Populus tomentosa wood. Journal of Northeast Forestry University, 2015, 43 (10): 88- 91. doi: 10.3969/j.issn.1000-5382.2015.10.018 | |
| 葛晓雯, 王立海, 侯捷建, 等. 褐腐杨木微观结构、力学性能与化学成分的关系研究. 北京林业大学学报, 2016, 38 (10): 112- 122. | |
| Ge X W , Wang L H , Hou J J , et al. Study on the relationship between microstructure, mechanical properties and chemical composition of brown rot poplar. Journal of Beijing Forestry University, 2016, 38 (10): 112- 122. | |
| 洪菊生, 陈伯望. 试论杉木无性系选育策略. 世界林业研究, 1993, 6 (3): 86- 91. | |
| Hong J S , Chen B W . The discussion of breeding strategy of Chinese fir clones. World Forestry Research, 1993, 6 (3): 86- 91. | |
| 胡德活, 林绪平, 阮梓材, 等.  杉木无性系早-晚龄生长性状的相关性及早期选择的研究. 林业科学研究, 2001, 14 (2): 168- 175. doi: 10.3321/j.issn:1001-1498.2001.02.008 | |
| Hu D H ,  Lin X P ,  Ruan Z C , et al.  Study on the growth character correlation of Chinese fir clone and early selection. Forest Research, 2001, 14 (2): 168- 175. doi: 10.3321/j.issn:1001-1498.2001.02.008 | |
| 胡梦霄, 杭芸, 黄华宏, 等. 杉木木材结晶度的近红外预测模型建立及变异分析. 浙江农林大学学报, 2017, 34 (2): 361- 368. | |
| Hu M X , Hang Y , Huang H H , et al. A near infrared prediction model and variation analysis of wood crystallinity in Cunninghamia lanceolata. Journal of Zhejiang A&F University, 2017, 34 (2): 361- 368. | |
| 黄安民, 费本华, 刘君良.  杉木木材性质研究进展. 世界林业研究, 2006, 19 (1): 47- 52. doi: 10.3969/j.issn.1001-4241.2006.01.011 | |
| Huang A M ,  Fei B H ,  Liu J L .  Advances in research on the wood property of Chinese fir. Wood Forestry Research, 2006, 19 (1): 47- 52. doi: 10.3969/j.issn.1001-4241.2006.01.011 | |
| 黄艳辉. 2007. 杉木木材微纤丝角及其与力学性质关系研究. 杨凌: 西北农林科技大学硕士学位论文. | |
| Huang Y H. 2007. Study on wood microfibril angle and its relation with wood mechanical properties. Yangling: MS thesis of Northwest Agriculture & Forestry University. [in Chinese] | |
| 姜笑梅, 陈益泰. 杉木材性株内的变异Ⅱ. 管胞形态的变异. 林业科学, 1997, 33 (5): 441- 446. | |
| Jiang X M , Chen Y T . Variation in wood properties of Cunninghamia lanceolataⅡ. variation of the morphology of the tube. Scientia Silvae Sinicae, 1997, 33 (5): 441- 446. | |
| 姜笑梅, 骆秀琴, 殷亚方. 不同湿地松种源木材材性遗传变异的研究. 林业科学, 2002, 38 (3): 130- 135. | |
| Jiang X M , Luo X Q , Yin Y F . Genetic variation in wood properties of 18 provenances of Pinus elliottii. Scientia Silvae Sinicae, 2002, 38 (3): 130- 135. | |
| 李坚, 刘一星, 崔永志, 等.  人工林杉木幼龄材与成熟材的界定及材质早期预测. 东北林业大学学报, 1999, 27 (4): 24- 28. doi: 10.3969/j.issn.1000-5382.1999.04.006 | |
| Li J ,  Liu Y X ,  Cui Y Z , et al.  Demarcation of juvenile wood and mature wood of planted Chinese fir and its wood quality prediction. Journal of Northeast Forestry University, 1999, 27 (4): 24- 28. doi: 10.3969/j.issn.1000-5382.1999.04.006 | |
| 李景涛, 段春玲, 周继磊, 等.  柳树无性系材性分析. 山东林业科技, 2017, 47 (1): 33- 36. doi: 10.3969/j.issn.1002-2724.2017.01.007 | |
| Li J T ,  Duan C L ,  Zhou J L , et al.  Analysis of wood properties of willow clones. Journal of Shandong Forestry Science and Technology, 2017, 47 (1): 33- 36. doi: 10.3969/j.issn.1002-2724.2017.01.007 | |
| 刘一星, 赵广杰. 木质资源材料科学. 北京: 中国林业出版社, 2004: 59- 61. | |
| Liu Y X , Zhao G J . Wood material resources. Beijing: China Forestry Publishing House, 2004: 59- 61. | |
| 骆秀琴, 管宁, 张寿槐, 等.  32个杉木无性系木材密度和力学性质差异. 林业科学研究, 1994, 7 (3): 259- 262. doi: 10.3321/j.issn:1001-1498.1994.03.004 | |
| Luo X Q ,  Guan N ,  Zhang S H , et al.  Differences in wood density and mechanical properties of 32 Cunninghamia lanceolata clones. Forest Research, 1994, 7 (3): 259- 262. doi: 10.3321/j.issn:1001-1498.1994.03.004 | |
| 任海青, 中井孝. 人工林杉木和杨树木材物理力学性质的株内变异研究. 林业科学, 2006, 42 (3): 13- 20. | |
| Ren H Q , Nakai T . Intratree variability of wood density and main wood mechanical properties in Chinese fir and poplar plantation. Scientia Silvae Sinicae, 2006, 42 (3): 13- 20. | |
| 施季森, 何祯祥. 林木无性繁殖及其在遗传改良中的地位. 世界林业研究, 1994, 7 (1): 25- 30. | |
| Shi J S , He Z X . Vegetative reproduction of forest trees and the role it plays in the genetical improvement. World Forestry Research, 1994, 7 (1): 25- 30. | |
| 施季森, 叶志宏, 翁玉榛, 等. 杉木生长与材性联合遗传改良研究. 南京林业大学学报, 1993, 17 (1): 1- 8. | |
| Shi J S , Ye Z H , Weng Y Z , et al. Research on the joint genetic improvement of growth and wood properties in Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Journal of Nanjing Forestry University, 1993, 17 (1): 1- 8. | |
| 王传贵, 江泽慧, 费本华, 等. 化学成分对木材细胞壁纵向弹性模量和硬度的影响. 北京林业大学学报, 2012, 34 (3): 107- 110. | |
| Wang C G , Jiang Z H , Fei B H , et al. Effects of chemical components on longitudinal MOE and hardness of wood cell wall. Journal of Beijing Forestry University, 2012, 34 (3): 107- 110. | |
| 王晓荣, 杜超群, 刘勇清, 等.  25年生湿地松针叶束水培无性系木材特性研究. 湖北林业科技, 2016, 45 (4): 13- 16. doi: 10.3969/j.issn.1004-3020.2016.04.004 | |
| Wang X R ,  Du C Q ,  Liu Y Q , et al.  Research on wood characteristics of water culture clones propagated from needle fascicles of 25-year-old Pinus elliottii. Hubei Forestry Science and Technology, 2016, 45 (4): 13- 16. doi: 10.3969/j.issn.1004-3020.2016.04.004 | |
| 韦立权. 2004. 杉木无性系生长与材性综合遗传改良研究. 南宁: 广西大学硕士学位论文. | |
| Wei L Q. 2004. Study on multiply selection and genetic improvement of Chinese fir clones for growth and wood property. Nanning: MS thesis of Guangxi University. [in Chinese] | |
| 吴中伦. 杉木. 北京: 中国林业出版社, 1984. | |
| Wu Z L . Cunninghamia lanceolata. Beijing: China Forestry Publishing House, 1984. | |
| 许忠坤. 杉木无性系选择与生长潜力分析. 林业科学研究, 2014, 27 (5): 598- 603. | |
| Xu Z K . Selection and growth potential analysis of Chinese fir clones. Forest Research, 2014, 27 (5): 598- 603. | |
| 尹思慈. 木材品质和缺陷. 北京: 中国林业出版社, 1990: 58 | |
| Yin S C . Wood quality and defects. Beijing: China Forestry Publishing House, 1990: 58 | |
| 余光, 高楠, 张纪卯, 等. 人工林峦大杉木材的物理力学性质. 西南林业大学学报, 2014, 34 (1): 106- 109. | |
| Yu G , Gao N , Zhang J M , et al. Study on physical and mechanical properties of Cunninghamia konishii wood. Journal of Southwest Forestry University, 2014, 34 (1): 106- 109. | |
| 余雁, 费本华, 张波, 等.  针叶材管胞细胞壁不同壁层的纵向弹性模量和硬度. 北京林业大学学报, 2006, 28 (5): 114- 118. doi: 10.3321/j.issn:1000-1522.2006.05.020 | |
| Yu Y ,  Fei B H ,  Zhang B , et al.  Longitudinal MOE and hardness of different cell wall layers of softwood tracheids. Journal of Beijing Forestry University, 2006, 28 (5): 114- 118. doi: 10.3321/j.issn:1000-1522.2006.05.020 | |
| 朱安明, 赖树华, 段爱国, 等. 21年生杉木优良无性系生长与材质性状研究. 林业科技通讯, 2015, (4): 8- 12. | |
| Zhu A M , Lai S H , Duan A G , et al. Study on growth and material properties of 21-year-old Cunninghamia lanceolata clones. Forest Science and Technology, 2015, (4): 8- 12. | |
| Åkerholm M ,  Salmén L .  The orientated structure of lignin and its viscoelastic properties studied by static and dynamic FTIR spectroscopy. Holzforschung, 2003, 57 (5): 459- 465. doi: 10.1515/HF.2003.069 | |
| Barrios A , Trincado G , Watt M , et al. Wood properties of juvenile and mature wood of Pinus radiata D. Don trees growing on contrasting sites in Chile. Forest Science, 2017, 63 (2): 184- 191. | |
| Borrega M ,  Ahvenainen P ,  Serimaa R , et al.  Composition and structure of balsa (Ochroma pyramidale) wood. Wood Science and Technology, 2014, 49 (2): 403- 420. doi: 10.1007/s00226-015-0700-5 | |
| Chen M L ,  Wang C G ,  Fei B H , et al.  Biological degradation of Chinese fir with Trametes versicolor(L.) Lloyd. Materials, 2017, 10 (7): 834- 847. doi: 10.3390/ma10070834 | |
| Donaldson L A . Within- and between-tree variation in microfibril angle in Pinus radiada. New Zealand Journal of Forestry Science, 1992, 22 (1): 77- 86. | |
| Faix O . Classification of lignins from different botanical orignins by FTIR spectroscopy. Holzforschung, 1991, 45 (Suppl.): 21- 27. | |
| Mansfield S D , Parish R , Lucca C M D , et al. Revisiting the transition between juvenile and mature wood: a comparison of fibre length, microfibril angle and relative wood density in lodgepole pine. Holzforschung, 2009, 63 (4): 449- 456. | |
| Song K , Liu B , Jiang X , et al. Cellular changes of tracheids and ray parenchyma cells from cambium to heartwood in Cunninghamia lanceolata. Journal of Tropical Forest Science, 2011, 23 (4): 478- 487. | |
| Sun C ,  Lai M ,  Zhang S , et al.  Age-related trends in genetic parameters for wood properties in Larix kaempferi clones and implications for early selection. Frontiers of Agricultural Science and Engineering, 2017, 4 (4): 482- 492. doi: 10.15302/J-FASE-2017184 | |
| Tanabe J , Ishiguri F , Tamura A , et al. Radial and between-family variations of the microfibril angle and the relationships with bending properties in Picea jezoensis families. Scandinavian Journal of Forest Research, 2016, 32 (1): 39- 44. | |
| Wang Y R ,  Liu C W ,  Zhao R J , et al.  Anatomical characteristics, microfibril angle and micromechanical properties of cottonwood (Populus deltoides) and its hybrids. Biomass and Bioenergy, 2016, 93, 72- 77. doi: 10.1016/j.biombioe.2016.06.011 | |
| Wang X Z ,  Deng Y H ,  Wang S Q , et al.  Evaluation of the effects of compression combined with heat treatment by nanoindentation of poplar cell walls. Holzforschung, 2014, 68 (2): 167- 173. doi: 10.1515/hf-2013-0084 | |
| Yin Y F ,  Bian M M ,  Song K L , et al.  Influence of microfibril angle on within tree variations in the mechanical properties of Chinese fir (Cunninghamia lanceolata). IAWA Journal, 2011, 32 (4): 431- 442. doi: 10.1163/22941932-90000069 | 
| [1] | 贺学娇,楚立威,文爽爽,卢孟柱,唐芳. 以玉米为例探究单子叶植物重力响应及维管结构的变化[J]. 林业科学, 2021, 57(2): 93-102. | 
| [2] | 杨昇,李改云. 金丝楸木材化学成分的不均一性[J]. 林业科学, 2021, 57(1): 169-177. | 
| [3] | 吴文娟,邹春阳,黄丽菁,金永灿. 竹材在LiCl/DMSO溶剂体系中的溶解及再生性能[J]. 林业科学, 2020, 56(9): 201-206. | 
| [4] | 刘延鹤,周建波,傅万四,张彬,常飞虎,何文. 基于高频热压成型的竹集成材制备及力学性能评价[J]. 林业科学, 2020, 56(8): 131-140. | 
| [5] | 周宇,韩雁明,李改云,储富祥. 酶解木质素质量浓度对纳米木质素粒子结构及载药行为的影响[J]. 林业科学, 2020, 56(3): 109-116. | 
| [6] | 沙如意,张沙沙,余瞻,赵福权,蔡成岗,肖竹钱,毛建卫. 假木质素沉积及对纤维素酶解的影响研究进展[J]. 林业科学, 2020, 56(3): 127-143. | 
| [7] | 傅慧静,胡霞,吴松青,王荣,梁光红,黄世国,张飞萍. 松褐天牛幼虫肠道黏质沙雷氏菌培养条件与木质素降解功能[J]. 林业科学, 2020, 56(2): 106-115. | 
| [8] | 李想,陈妮,齐学敏,楚杰,张军华,常德龙,许雅雅. 乙醇钠预处理木质纤维素原料的组分及结构特性[J]. 林业科学, 2020, 56(2): 156-163. | 
| [9] | 王菲彬,王昕萌,杨树明,姜桂超,阙泽利,周海宾. 国产杉木不同层板厚度对正交胶合木力学性能的影响[J]. 林业科学, 2020, 56(11): 168-175. | 
| [10] | 胡嘉祺,齐芪,蒋湘宁,盖颖. 毛白杨融合基因4CL1-CCR对烟草木质素沉积的影响[J]. 林业科学, 2020, 56(10): 63-69. | 
| [11] | 孟凡丹, 王超, 向琴, 余养伦, 于文吉. 疏解竹单板高温干热处理对竹基纤维复合材料性能的影响[J]. 林业科学, 2019, 55(9): 142-148. | 
| [12] | 赵清泉, 池玉杰, 张健, 冯连荣. 偏肿革裥菌在木质环境下转录组构建与相关基因表达分析[J]. 林业科学, 2019, 55(8): 95-105. | 
| [13] | 熊福全, 王航, 韩雁明, 储富祥, 吴义强. 木质素微纳米球的制备与应用研究现状[J]. 林业科学, 2019, 55(8): 170-175. | 
| [14] | 安胜男, 马晓军, 朱礼智. 木粉增强P34HB生物复合材料的制备及其结构性能表征[J]. 林业科学, 2019, 55(3): 125-133. | 
| [15] | 李安鑫,吕建雄,蒋佳荔. 基于生长轮的杉木早材黏弹性[J]. 林业科学, 2019, 55(12): 93-100. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||