 
		林业科学 ›› 2020, Vol. 56 ›› Issue (10): 11-25.doi: 10.11707/j.1001-7488.20201002
刘辉1,2,牟长城1,*,吴彬1,张悦1,井立杰1
收稿日期:2019-02-06
									
				
									
				
									
				
											出版日期:2020-10-25
									
				
											发布日期:2020-10-20
									
			通讯作者:
					牟长城
												基金资助:Hui Liu1,2,Changcheng Mu1,*,Bin Wu1,Yue Zhang1,Lijie Jing1
Received:2019-02-06
									
				
									
				
									
				
											Online:2020-10-25
									
				
											Published:2020-10-20
									
			Contact:
					Changcheng Mu   
												摘要:
目的: 探讨东北温带8种森林类型非生长季土壤温室气体通量、非生长季土壤温室气体排放的年贡献率及增温潜势的规律,以期揭示森林类型变化对土壤非生长季温室气体排放的影响。方法: 采用静态暗箱-气相色谱方法,测定温带帽儿山2种人工林(红松人工林与兴安落叶松人工林,林龄均51年)、5种天然次生林(硬阔林、白桦林、山杨林、杂木林和蒙古栎林,林龄均为61~67年)和原始针阔混交林(林龄150年)非生长季土壤CO2、CH4和N2O通量及相关环境因子(0~40 cm土层土壤含水率、pH值、有机碳含量和有效氮含量,5 cm深处土壤温度T5及积雪厚度),采用单因素和Duncan法进行方差分析和多重比较(α=0.05),利用多元逐步回归从各月平均气体通量的可能影响因子(0~40 cm土层土壤含水率、pH值、有机碳含量和有效氮含量,5 cm深处土壤温度T5及积雪厚度)中筛选主要影响因子。结果: 帽儿山8种温带林型的非生长季土壤CO2通量(15.97~57.86 mg·m-2h-1)表现为2种人工林和4种次生林(蒙古栎林除外)显著高于原始林107.5%~147.1%和135.3%~262.3%(P < 0.05);非生长季CH4通量(-69.74~-9.13 μg·m-2h-1)表现为3种次生林(硬阔林、山杨林和杂木林)显著高于原始林152.8%~174.6%(P < 0.05),2种人工林却低于原始林52.0%~64.1%(P > 0.05);非生长季N2O通量(7.68~40.55 μg·m-2h-1)表现为2种人工林和3种次生林(硬阔林、山杨林和杂木林)显著高于原始林114.2%~286.6%和116.3%~192.0%(P < 0.05);非生长季土壤CO2排放通量表现为原始林主要受T5及0~40 cm土层土壤pH值、含水率及硝态氮含量影响,人工林主要受T5和积雪厚度影响,次生林主要受T5和0~40 cm土层土壤铵态氮含量影响;CH4吸收表现为原始林仅受T5影响,人工林受积雪厚度影响,次生林受T5和0~40 cm土层土壤铵态氮含量影响;N2O排放表现为原始林仅受积雪厚度影响,人工林与次生林主要受积雪厚度及0~40 cm土层土壤铵态氮含量和含水率影响;与原始林相比,人工林和次生林使非生长季土壤CH4吸收的年贡献率(12.3%~30.2%)减少2.8%~10.0%(山杨林除外),而使CO2和N2O排放的年贡献率(4.8%~12.5%和7.0%~63.6%)增加了3.1%~7.7%或3.0%~56.6%;与原始林相比,人工林和次生林使非生长季土壤温室气体增温潜势(71.16~250.64 g CO2·m-2)显著提高130%~190%和120%~250%(P < 0.05)。结论: 温带原始红松林被皆伐后形成的人工林和次生林恢复至51~67年时,早期的人为干扰对其非生长季温室气体排放的影响尚未得到彻底消除;人工林和次生林CO2、N2O通量较原始林均显著提高,次生林CH4通量显著提高,人工林却显著降低。
中图分类号:
刘辉,牟长城,吴彬,张悦,井立杰. 黑龙江帽儿山温带森林类型土壤非生长季温室气体排放特征[J]. 林业科学, 2020, 56(10): 11-25.
Hui Liu,Changcheng Mu,Bin Wu,Yue Zhang,Lijie Jing. Characterization of Greenhouse Gas Emissions from the Soil of Temperate Forest Types During Non-Growing Season in Maoer Mountain, Heilongjiang[J]. Scientia Silvae Sinicae, 2020, 56(10): 11-25.
 
												
												表1
帽儿山8种林分类型概况"
| 林型 Stand type | 林龄 Stand age/a | 密度 Density/ hm-2 | 胸高断面积 Basal area at breast height/(m2·hm-2) | 平均胸径 Mean DBH /cm | 胸径范围 Range of DBH/cm | 坡位 Slope position | 坡向 Slopeaspect | 乔木组成 Arbor composition | 
| LR | 51 | 2 502 | 52.5 | 16.4 | 3.5~25.2 | 山坡下部 Lower | 东 East | 兴安落叶松为优势种,伴生少量榆树 L. gmelinii is the dominant species with a few elm trees | 
| HR | 51 | 2 111 | 42.1 | 15.0 | 3.9~34.4 | 山坡下部 Lower | 西 West | 红松为主,伴生少量水曲柳 Mainly Korean pine, with a small amount of F. mandshurica | 
| YK | 66 | 1 533 | 33.4 | 12.2 | 2~50.1 | 沟谷地带 Valley zone | 南 South | 水曲柳为优势种,伴生蒙古栎、春榆等 F. mandshurica is the dominant species, accompanied by Mongolian oak, spring elm, etc. | 
| BH | 66 | 4 200 | 38.2 | 7.9 | 1.5~30.2 | 山坡中部 Middle | 南 South | 白桦为优势种,伴生椴树、槭树等 White birch is the dominant species, accompanied by lime trees, maple trees, etc. | 
| SY | 66 | 1 817 | 33.9 | 12.1 | 2.1~48.6 | 坡中上部 Upper middle | 西 West | 山杨为优势种,伴生水曲柳、椴树 P. davidiana is the dominant species, associated with F. mandshurica and lime trees | 
| ZM | 61 | 1 939 | 36.4 | 11.9 | 2.2~59 | 坡中上部 Upper middle | 南 South | 胡桃楸20%、杨树20%和黄菠萝10%,尚有栎树、榆树、桦树等 Walnut 20%, poplar 20%, yellow pineapple 10%, and oak, elm, birch, etc. | 
| MGL | 67 | 1 583 | 37.4 | 13.5 | 2~56.4 | 山坡上部 Upper | 东 East | 蒙古栎为优势种,伴生少量桦树和栎树 Q. mongolica is the dominant species, accompanied by a few birch and oak trees | 
| YS | 150 | 789 | 54.6 | 25.3 | 4~69.1 | 山坡上部 Upper | 南 South | 红松为优势种,伴生少量杨树和蒙古栎 Korean pine is the dominant species, accompanied by a few poplars and Mongolian oak | 
 
												
												表2
帽儿山各林分类型的非生长季土壤环境因子测定结果平均值①"
| 环境因子 Environmental factor | 人工林 Plantation | 次生林 Natural secondary forest | 原始林 Virgin forest(YS) | ||||||
| HR | LR | YK | BH | SY | ZM | MGL | |||
| T5/℃ | -2.06±0.03B | -4.31±0.10A | -1.25±0.01C | -0.59±0.02G | -0.71±0.03F | -0.83±0.04E | -1.1±0.05D | -0.81±0.01E | |
| pH | 6.10±0.03B | 5.76±0.06A | 6.38±0.04B | 6.14±0.07B | 6.11±0.03B | 6.11±0.02B | 6.27±0.28B | 5.69±0.14A | |
| 硝态氮含量 NO3--N content/(mg·g-1) | 11.09±4.46B | 8.79±2.14B | 3.08±1.38A | 3.48±0.17A | 4.11±0.56A | 3.65±0.67A | 3.02±0.76A | 3.11±0.63A | |
| 铵态氮含量 NH4+-N content/(mg·g-1) | 24.50±6.06B | 20.59±3.96B | 5.55±1.34A | 4.34±0.94A | 6.65±1.50A | 6.31±1.17A | 4.94±0.98A | 5.21±0.36A | |
| 含水量 Soilmoisture/(g·g-1) | 0.56±0.01E | 0.46±0.10D | 0.40±0.05D | 0.34±0.03BC | 0.34±0.03C | 0.32±0.02BC | 0.26±0.01A | 0.28±0.02AB | |
| 有机碳含量 SOC content/(mg·g-1) | 64.39±2.32C | 42.4±2.09B | 61.94±3.11C | 47.26±4.63B | 44.6±4.17B | 49.17±7.30B | 33.72±2.95A | 48.81±7.98B | |
| 积雪厚度 Snow thickness/cm | 12.55±2.67A | 18.51±0.54B | 15.97±2.13B | 16.69±0.56B | 16.41±1.37B | 18.07±0.79B | 11.26±1.52A | 12.92±1.06A | |
 
												
												表3
帽儿山8种林型非生长季土壤CO2、CH4和N2O通量与环境因子的逐步多元线性回归分析①"
| 温室气体类型 Greenhouse gas type | 林分类型 Stand type | T5 | pH | NO3--N | NH4+-N | SOC | 含水率 Soil moisture | 积雪厚度 Thickness of the snow | 截距 Intercept | R2 | P | 
| CO2 | HR | -0.92*** | 15.60*** | 0.84 | < 0.001 | ||||||
| LR | 0.58*** | -0.43** | 12.42*** | 0.85 | < 0.001 | ||||||
| YK | 1.25*** | 0.41** | -0.31** | 120.91*** | 0.88 | < 0.001 | |||||
| BH | 0.56* | -0.39+ | 62.81*** | 0.93 | < 0.001 | ||||||
| SY | 0.83*** | 62.12*** | 0.89 | < 0.001 | |||||||
| ZM | 0.95*** | 76.74*** | 0.89 | < 0.001 | |||||||
| MGL | 0.57* | 0.50* | 0.52* | -100.19* | 0.58 | < 0.01 | |||||
| YS | 0.71*** | 0.22* | -0.25** | 0.21* | 68.42* | 0.95 | < 0.001 | ||||
| CH4 | HR | -0.63** | -0.02*** | 0.36 | < 0.01 | ||||||
| LR | -0.69** | -0.38* | -0.65*** | -0.20*** | 0.70 | < 0.01 | |||||
| YK | 1.22*** | 0.56* | -1.16*** | -0.22*** | 0.69 | < 0.001 | |||||
| BH | 0.83*** | 0.75*** | -0.02** | 0.69 | < 0.001 | ||||||
| SY | 0.98*** | -0.42* | 0.61** | -0.07*** | 0.69 | < 0.001 | |||||
| ZM | -0.47** | -0.50** | -1.57** | -0.29*** | 0.70 | < 0.001 | |||||
| MGL | 0.97*** | 0.71*** | -0.05 | 0.80 | < 0.001 | ||||||
| YS | 0.76** | -0.34+ | -0.04*** | 0.50 | < 0.01 | ||||||
| N2O | HR | 0.26* | -0.8*** | 0.01 | 0.88 | < 0.001 | |||||
| LR | 0.78*** | 0.43** | -0.01 | 0.70 | < 0.001 | ||||||
| YK | 0.47+ | -0.31+ | -0.63** | 0.47* | 0.00 | 0.67 | < 0.001 | ||||
| BH | -0.63* | -2.25** | 0.04*** | 0.42 | < 0.01 | ||||||
| SY | -0.53+ | -0.63* | 0.57* | -0.84** | 0.17 | 0.47 | < 0.05 | ||||
| ZM | 0.67* | 0.38* | -0.01 | 0.72 | < 0.001 | ||||||
| MGL | -0.64* | -1.35** | 0.02*** | 0.46 | < 0.05 | ||||||
| YS | -0.42+ | 0.02*** | 0.12 | < 0.1 | |||||||
 
												
												表4
帽儿山8种林型非生长季土壤CO2、CH4和N2O的Q10值"
| 林分类型 Stand type | CO2 | CH4 | N2O | ||||||||
| 拟合模型 Models | R2 | Q10 | 拟合模型 Models | R2 | Q10 | 拟合模型 Models | R2 | Q10 | |||
| HR | y=42.7e0.19t | 0.51 | 6.7 | y=0.02e0.17t | 0.28 | 5.5 | y=0.02e0.24t | 0.43 | 11.0 | ||
| LR | y=25.8e0.19t | 0.52 | 6.7 | y=0.01e0.23t | 0.42 | 10.0 | y=0.02e0.26t | 0.46 | 13.5 | ||
| YK | y=56.8e0.25t | 0.67 | 12.2 | y=0.07e0.16t | 0.30 | 5.0 | y=0.04e-0.04t | 0.04 | 0.7 | ||
| BH | y=31.6e0.27t | 0.55 | 14.9 | y=0.05e0.25t | 0.29 | 12.2 | y=0.01e0.08t | 0.04 | 2.2 | ||
| SY | y=43.1e0.27t | 0.85 | 14.9 | y=0.06e0.28t | 0.43 | 16.4 | y=0.03e0.02t | 0.00 | 1.2 | ||
| ZM | y=43.2e0.26t | 0.52 | 13.5 | y=0.07e0.18t | 0.21 | 6.0 | y=0.02e0.12t | 0.08 | 3.3 | ||
| MGL | y=18.5e0.17t | 0.68 | 5.5 | y=0.02e0.10t | 0.39 | 2.7 | y=0.01e-0.03t | 0.03 | 0.7 | ||
| YS | y=8.4e0.15t | 0.33 | 4.5 | y=0.03e0.21t | 0.33 | 8.2 | y=0.01e0.08t | 0.05 | 2.2 | ||
 
												
												表5
帽儿山8种林型非生长季土壤温室气体增温潜势"
| 林分类型 Stand type | CO2 | CH4 | N2O | 增温潜势 Total GWP (gCO2·m-2) | |||||
| 排放总量 Total flux (g·m-2) | GWP(g·m-2) | 排放总量 Total flux(g·m-2) | GWP(gCO2·m-2) | 排放总量 Total flux(g·m-2) | GWP(gCO2·m-2) | ||||
| LR | 127.12±8.59B | 127.12±8.59B | -0.05±0.01C | -1.18±0.06C | 0.14±0.04CD | 40.28±10.97CD | 166.21±7.10B | ||
| HR | 175.11±14.31CD | 175.11±14.31CD | -0.05±0.01C | -1.15±0.24C | 0.12±0.01C | 33.82±2.67C | 207.78±14.27C | ||
| YK | 198.91±23.92DE | 198.91±23.92DE | -0.26±0.09A | -6.37±2.33A | 0.17±0.05D | 49.15±14.87D | 241.69±24.89D | ||
| BH | 145.12±6.64BC | 145.12±6.64BC | -0.14±0.03B | -3.57±0.76B | 0.06±0.01AB | 16.42±2.07AB | 157.97±4.11B | ||
| SY | 221.63±28.90E | 221.63±28.90E | -0.25±0.04A | -6.33±0.90A | 0.12±0.04CD | 35.34±10.64CD | 250.64±23.56D | ||
| ZM | 170.51±34.92CD | 170.51±34.92CD | -0.28±0.03A | -6.91±0.75A | 0.09±0.014BC | 26.00±4.26BC | 189.60±32.91BC | ||
| MGL | 84.62±12.28A | 84.62±12.28A | -0.09±0.02BC | -2.15±0.41BC | 0.03±0.01A | 8.97±0.24A | 91.44±12.01A | ||
| YS | 61.14±9.41A | 61.14±9.41A | -0.10±0.03BC | -2.55±0.66BC | 0.04±0.02AB | 12.57±5.28AB | 71.16±14.31A | ||
| 陈刚亮, 李建华, 王育来. 河岸带土壤反硝化作用研究进展. 安徽农业科学, 2012. 40 (30): 14799- 14803. | |
| Chen G L , Li J H , Wang Y L . Research advances in riparian soil denitrification. Journal of Anhui Agricultural Sciences, 2012. 40 (30): 14799- 14803. | |
| 丁维新, 蔡祖聪. 温度对甲烷产生和氧化的影响. 应用生态学报, 2003. 14 (4): 604- 608. | |
| Ding W X , Cai Z C . Effect of temperature on methane production and oxidation in soils. Chinese Journal of Applied Ecology, 2003. 14 (4): 604- 608. | |
| 冯虎元, 程国栋, 安黎哲. 微生物介导的土壤甲烷循环及全球变化研究. 冰川冻土, 2004. 26 (4): 411- 419. | |
| Feng H Y , Cheng G D , An L Z . Microbial-mediated methane cycle in soils and global change:a review. Journal of Glaciology and Geocryology, 2004. 26 (4): 411- 419. | |
| 菊花, 申国珍, 马明哲, 等. 北亚热带地带性森林土壤温室气体通量对土地利用方式改变和降水减少的响应. 植物生态学报, 2016. 40 (10): 1049- 1063. | |
| Ju H , Shen G Z , Ma M Z , et al. Greenhouse gas fluxes of typical northern subtropical forest soils:impacts of land use change and reduced precipitation. Chinese Journal of Plant Ecology, 2016. 40 (10): 1049- 1063. | |
| 刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量. 生态学报, 2010. 30 (15): 4075- 4084. | |
| Liu S , Wang C K , Xu F . Soil effluxes of carbon dioxide, methane and nitrous oxide during non-growing season for four temperate forests in northeastern China. Acta Ecologica Sinica, 2010. 30 (15): 4075- 4084. | |
| 马莉, 牟长城, 王彪, 等. 排水造林的温带小兴安岭沼泽湿地碳源/汇的影响. 林业科学, 2017. 53 (10): 1- 12. | |
| Ma L , Mu C C , Wang B , et al. Effects of wetland drainage for forestation on carbon source or sink of temperate marshes wetlands in Xiaoxing'an Mountains of China. Scientia Silvae Sinicae, 2017. 53 (10): 1- 12. | |
| 孟春, 王立海, 沈微. 择伐对小兴安岭地区针阔混交林土壤呼吸温度敏感性的影响. 林业科学, 2011. 47 (3): 102- 106. | |
| Meng C , Wang L H , Shen W . Effect of sensitivity of soil respiration to soil temperature in a conifer-broad leave forest in Xiaoxing'an Mountain after select cutting. Scientia Silvae Sinicae, 2011. 47 (3): 102- 106. | |
| 孙海龙, 张彦东, 吴世义. 东北温带次生林和落叶松人工林土壤CH4吸收和N2O排放通量. 生态学报, 2013. 33 (17): 5320- 5328. | |
| Sun H L , Zhang Y D , Wu S Y . Methane and nitrous oxide fluxes in temperate secondary forest and larch plantation in Northeastern China. Acta Ecologica Sinica, 2013. 33 (17): 5320- 5328. | |
| 王新源, 李玉霖, 赵学勇, 等. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展. 生态学报, 2012. 32 (15): 4890- 4901. | |
| Wang X Y , Li Y L , Zhao X Y , et al. Responses of soil respiration to different environment factors in semi-arid and arid areas. Acta Ecologica Sinica, 2012. 32 (15): 4890- 4901. | |
| 吴建国, 周巧富. 青海南部高原积雪期与生长季高寒草甸土壤CO2、CH4和N2O通量的观测. 环境科学, 2016. 37 (8): 2914- 2923. | |
| Wu J G , Zhou Q F . Soil CO2, CH4, and N2O fluxes from alpine meadows on the plateau of southern Qinghai Province during snow cover period and growing seasons. Environmental Science, 2016. 37 (8): 2914- 2923. | |
| 张悦, 牟长城, 刘辉, 等. 透光抚育对温带帽儿山红松林非生长季土壤温室气体排放的影响. 应用生态学报, 2018. 29 (7): 2183- 2194. | |
| Zhang Y , Mu C C , Liu H , et al. Effects of light-felling on non-growing season greenhouse gas emission from soils in Korean pine forests in Maoer Mountains, China. Chinese Journal of Applied Ecology, 2018. 29 (7): 2183- 2194. | |
| Bender M ,  Conrad R .  Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biology and Biochemistry, 1995. 27 (12): 1517- 1527. doi: 10.1016/0038-0717(95)00104-M | |
| Borken W ,  Beese F .  Methane and nitrous oxide fluxes of soils in pure and mixed stands of European beech and Norway spruce. European Journal of Soil Science, 2006b. 57 (5): 617- 625. doi: 10.1111/j.1365-2389.2005.00752.x | |
| Borken W , Davidson E A , Savage K , et al. Effect of summer throughfall exclusion, summer drought, and winter snow cover on methane fluxes in a temperate forest soil. Soil Biology & Biochemistry, 2006a. 38 (6): 1388- 1395. | |
| Brooks P D ,  Grogan P ,  Templer P H , et al.  Carbon and nitrogen cycling in snow-covered environments. Geography Compass, 2011. 5 (9): 682- 699. doi: 10.1111/j.1749-8198.2011.00420.x | |
| Butterbach-Bahl K ,  Breuer L ,  Gasche R , et al.  Exchange of trace gases between soils and the atmosphere in Scots pine forest ecosystems of the northeastern German lowlands. 1. fluxes of N2O, NO/NO2 and CH4 at forest sites with different N-deposition. Forest Ecology and Management, 2002. 167 (1-3): 123- 134. doi: 10.1016/S0378-1127(01)00725-3 | |
| Callewaert P , Lenders S , Gryze , et al. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 2007. 66 (6): 1981- 1987. | |
| Dixon R K ,  Solomon A M ,  Brown S , et al.  Carbon pools and flux of global forest ecosystems. Science, 1994. 263 (5144): 185- 190. doi: 10.1126/science.263.5144.185 | |
| Edwards A C ,  Killham K .  The effect of freeze-thaw on gaseous nitrogen loss from upland soils. Soil Use and Management, 1986. 2 (3): 86- 91. doi: 10.1111/j.1475-2743.1986.tb00688.x | |
| Gasche R , Papen H . A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany:2. NO and NO2 fluxes. Journal of Geophysical Research:Atmospheres, 1999. 104 (15): 18505- 18520. | |
| Groffman P M ,  Hardy J P ,  Driscol C T , et al.  Snow depth, soil freezing, and fluxes of C dioxide, nitrous oxide and methane in a northern hardwood forest. Global Change Biology, 2006. 12 (9): 1748- 1760. doi: 10.1111/j.1365-2486.2006.01194.x | |
| Gundersen P J R ,  Christiansen G .  The response of methane and nitrous oxide fluxes to forest change in Europe. Biogeo Sciences, 2012. 9 (10): 3999- 4012. doi: 10.5194/bg-9-3999-2012 | |
| Houghton R A .  Why are estimates of the terrestrial carbon balance so different?. Global Change Biology, 2003. 9 (4): 500- 509. doi: 10.1046/j.1365-2486.2003.00620.x | |
| Jassal R S , Black T A , Roy R , et al. Effect of nitrogen fertilization on soil CH4, and N2O fluxes, and soil and bole respiration. Geoderma, 2011. 162 (1): 182- 186. | |
| Jobbagy E G ,  Jackson R B .  Vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000. 10 (2): 423- 436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 | |
| Jones H G ,  Pomeroy J W ,  Davies T D , et al.  CO2 in Arctic snow cover:landscape form, in-pack gas concentration gradients, and the implications for the estimation of gaseous fluxes. Hydrological Processes, 1999. 13 (18): 2977- 2989. doi: 10.1002/(SICI)1099-1085(19991230)13:18<2977::AID-HYP12>3.0.CO;2-# | |
| Kaipainen T , Liski J , Pussinen A , et al. Managing carbon sinks by changing rotation length in European forests. Environmental Science & Policy, 2004. 7 (3): 205- 219. | |
| Kim Y ,  Kodama Y ,  Fochesatto G J .  Environmental factors regulating winter CO2 flux in snow-covered black forest soil of Interior Alaska. Geochemical Journal, 2017. 51 (4): 359- 371. doi: 10.2343/geochemj.2.0475 | |
| Lars V ,  Inger K S ,  Ingeborg C , et al.  Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Forest Ecology and Management, 2008. 255 (1): 35- 48. doi: 10.1016/j.foreco.2007.08.015 | |
| Liptzin D ,  Williams M W ,  Helmig D , et al.  Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry, 2009. 95 (1): 151- 166. doi: 10.1007/s10533-009-9303-2 | |
| Liski J , Nissinen A , Erhard M . Climatic effects on litter decomposition from Arctic tundra to tropical rainforest. Global Change Biology, 2010. 9 (4): 575- 584. | |
| Liu H , Zhao P , Lu P , et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agriculture, Ecosystems & Environment, 2008. 124 (1): 125- 135. | |
| Machimura T ,  Kobayashi Y ,  Iwahana G .  Change of carbon dioxide budget during three years after deforestation in Eastern Siberian larch forest. Journal of Agricultural Meteorology, 2005. 60 (5): 653- 656. doi: 10.2480/agrmet.653 | |
| Mcquire A D ,  Melillo J M ,  Randerson J T , et al.  Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions:comparison with measurements of atmospheric carbon dioxide in high latitudes. Biogeochemistry, 2000. 48 (1): 91- 114. doi: 10.1023/A:1006286804351 | |
| Merbold L ,  Steinlin C ,  Hagedorn F .  Winter greenhouse gas fluxes (CO2、CH4、N2O) from a subalpine grassland. Biogeo Sciences, 2013. 10 (5): 3185- 3203. doi: 10.5194/bg-10-3185-2013 | |
| Miao Y , Song C , Wang X , et al. Greenhouse gas emissions from different wetlands during the snow-covered season in Northeast China. Atmospheric Environment, 2012. 62 (12): 328- 335. | |
| Monson R K ,  Lipson D L ,  Burns S P , et al.  Winter forest soil respiration controlled by climate and microbial community composition. Nature, 2006. 439 (7077): 711- 714. doi: 10.1038/nature04555 | |
| Pacala S W ,  Hurtt G C ,  Baker D , et al.  Consistent land-and atmosphere-based U.S. carbon sink estimates. Science, 2001. 292 (5525): 2316- 2320. doi: 10.1126/science.1057320 | |
| Pan Y D ,  Birdsey R A ,  Fang J Y , et al.  A large and persistent carbon sink in the world's forests. Science, 2011. 333 (6045): 988- 993. doi: 10.1126/science.1201609 | |
| Panikov N S , Flanagan P W , Oechel W C , et al. Microbial activity in soils frozen to below 39℃. Soil Biology & Biochemistry, 2006. 38 (12): 785- 794. | |
| Schimel D S ,  House J L ,  Hibbard K A , et al.  Recent patterns and mechanisms of carbon recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001. 414 (6860): 169- 172. doi: 10.1038/35102500 | |
| Sheng H ,  Yang Y S ,  Yang Z J , et al.  The dynamic response of soil respiration to land-use changes in subtropical China. Global Change Biology, 2010. 16 (3): 1107- 1121. doi: 10.1111/j.1365-2486.2009.01988.x | |
| Sherwood ,  Steven C ,  Sandrine Bony , et al.  Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 2014. 505 (7481): 37- 42. doi: 10.1038/nature12829 | |
| Shi B K , Gao W F , Jin G Z . Effects on rhizospheric and heterotrophic respiration of conversion from primary forest to secondary forest and plantations in northeast China. European Journal of Soil Biology, 2015. 18 (66): 11- 18. | |
| Shiogama H ,  Ogura T .  Climate science:clouds of uncertainty. Nature, 2014. 505 (7481): 34- 35. doi: 10.1038/505034a | |
| Smith K A ,  Ball T ,  Conen F , et al.  Exchange of greenhouse gases between soil and atmosphere:interactions of soil physical factors and biological processes. European Journal of Soil Science, 2003. 54 (4): 779- 791. doi: 10.1046/j.1351-0754.2003.0567.x | |
| Sullivan B W ,  Kolb T E ,  Hart S C , et al.  Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosapine forests. Forest Ecology and Management, 2008. 255 (12): 4047- 4055. doi: 10.1016/j.foreco.2008.03.051 | |
| Tang X ,  Liu S ,  Zhou G , et al.  Soil-atmospheric exchange of CO2, CH4 and N2O in three subtropical forest ecosystems in southern China. Global Change Biology, 2006. 12 (3): 546- 560. doi: 10.1111/j.1365-2486.2006.01109.x | |
| Teepe R , Brumme R , Beese F . Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land. Soil Biology and Biochemistry, 2000. 32 (11/12): 1807- 1810. | |
| Teepe R ,  Vor A ,  Beese F , et al.  Emissions of N2O from soils during cycles of freezing and thawing and the effects of soil water, texture and duration of freezing. European Journal of Soil Science, 2004. 55 (2): 357- 365. doi: 10.1111/j.1365-2389.2004.00602.x | |
| Tian H , MelilloJ M , Kicklighter D W , et al. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus Series B-chemical & Physical Meteorology, 1999. 51 (2): 414- 452. | |
| Tian Y ,  Haibara K ,  Toda H , et al.  Microbial biomass and activity along a natural pH gradient in forest soils in a karst region of the upper Yangtze River, China. Jounal of Forest Research, 2008. 13 (4): 205- 214. doi: 10.1007/s10310-008-0073-9 | |
| Tierling J , Kuhlmann H . Emissions of nitrous oxide (N2O) affected by pH-related nitrite accumulation during nitrification of N fertilizers. Geoderma, 2018. 310 (15): 12- 21. | |
| Valentini R ,  Matteucci G ,  Dolman A J , et al.  Respiration as the main determinant of carbon balance in European forests. Nature, 2000. 404, 861- 865. doi: 10.1038/35009084 | |
| Verchot L V ,  Davidson E A ,  Cattânio H , et al.  Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern Amazonia. Global Biogeochemical Cycles, 1999. 13 (1): 31- 46. doi: 10.1029/1998GB900019 | |
| Werner C , Zheng X , Tang J , et al. N2O, CH4 and CO2 emissions from seasonal tropical rain forests and a rubber plantation in Southwest China. Plant and Soil, 2006. 289 (1/2): 335- 353. | |
| Wolf B ,  Zheng X H ,  Brüggemann N , et al.  Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 2010. 464 (7290): 881- 884. doi: 10.1038/nature08931 | |
| Wu J J , Yang Z J , Weng F J , et al. Comparison of soil respiration in natural Castanopsis carlesii forest and planta-tion forest. Environment Science, 2014. 35 (6): 2426- 2432. | |
| Zhao J X , Wang S J , Chen Q B , et al. Study on soil respiration under natural and artificial forests of Pinus yunnanensis in middle Yunnan plateau, China. Journal of Central South University of Forestry and Technology, 2015. 35 (1): 96- 103. | 
| [1] | 庞勇, 蒙诗栎, 李增元. 机载高分辨率遥感影像的傅氏纹理因子估测温带森林地上生物量[J]. 林业科学, 2017, 53(3): 94-104. | 
| [2] | 李晓娜;国庆喜;王兴昌;郑海富. 东北天然次生林下木树种生物量的相对生长[J]. 林业科学, 2010, 46(8): 22-32. | 
| [3] | 王兴昌 王传宽 张全智 李世业 李国江. 东北主要树种心材与边材的生长特征*[J]. 林业科学, 2008, 44(5): 102-108. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||