欢迎访问林业科学,今天是

林业科学 ›› 2017, Vol. 53 ›› Issue (11): 94-103.doi: 10.11707/j.1001-7488.20171111

• 论文与研究报告 • 上一篇    下一篇

林隙主被动遥感协同自动识别

毛学刚, 侯吉宇, 范文义   

  1. 东北林业大学林学院 哈尔滨 150040
  • 收稿日期:2016-10-21 修回日期:2017-02-08 出版日期:2017-11-25 发布日期:2017-12-13
  • 基金资助:
    国家自然科学基金项目(31300533)。

Object-Based Automatic Recognition for Forest Gaps Using Aerial Image and LiDAR Data

Mao Xuegang, Hou Jiyu, Fan Wenyi   

  1. School of Forestry, Northeast Forestry University Harbin 150040
  • Received:2016-10-21 Revised:2017-02-08 Online:2017-11-25 Published:2017-12-13

摘要: [目的]研究林隙主被动遥感协同自动识别方法,为进一步量化林隙特征提供技术支持。[方法]以真彩色航空正射影像(0.2 m)和机载LiDAR(3.7点·m-2)为主被动遥感数据源,选取东北典型天然次生林——帽儿山实验林场东林施业区为研究区进行面向对象林隙识别。在面向对象分类过程中,通过对比3种分割方案(航空影像分割、LiDAR数据分割、航空影像&LiDAR协同分割)、10种尺度(10~100,步长为10)确定最优分割方案及尺度参数。在最优分割结果基础上应用航空影像的光谱特征、LiDAR数据提取的高度特征及共同特征,应用支持向量机分类器(SVM)进行林隙识别。[结果]3种分割方案的最优尺度均为20;所有尺度均是基于LiDAR数据分割ED3modified(0.52±0.11)低于基于航空影像分割(0.58±0.07)与航空影像&LiDAR协同数据分割(0.58±0.07)。在LiDAR数据最优尺度(20)下,采用光谱和高度共同特征的主被动识别与单独采用光谱特征的主动识别及单独使用高度特征的被动识别相比,分类精度分别提高36.71%和8.17%。[结论]3种分割方案中,基于LiDAR数据分割结果最好;使用主被动遥感协同自动识别进行林隙分类时精度最高(OA=87.73%,Kappa=0.81)。

关键词: 林隙, 尺度分割, 分类特征, LiDAR, 航空影像, CHM, 支持向量机

Abstract: [Objective] Identification of forest canopy gap is a prerequisite to quantify the forest gap characteristics (such as size, shape and dynamics), and a basis for further understanding the complex structural forest species regeneration and studying the understory species diversity, in order to study the active and passive remote sensing method for forest gap recognition. This study could provide further technical support for the quantitative analysis of forest gap features.[Method] In this study, true color aerial orthophoto (0.2 m) and airborne LiDAR (3.7 points·m-2) were used as the active and passive remote sensing data sources, respectively, and northeast typical natural secondary forest-Mao'ershan experimental forest farm Donglin industry zone was selected as the study area for the object oriented gap recognition. Three segmentation schemes (based on aerial image segmentation, LiDAR segmentation, collaboration of aerial image and LiDAR segmentation) were adopted when processing object oriented classification and each segmentation scheme was divided to 10 scales (10-100, step size 10) to find the optimal segmentation scale parameter. Based on the optimal segmentation result, the support vector machine classifier (SVM) with spectral features of aerial image, height features extracted from LiDAR data were used to identify the forest gap.[Result] The optimal scale was 20, and the ED3modified value of LiDAR data segmentation (0.52±0.11) was always lower than that of aerial image segmentation (0.58±0.07) or collaboration of aerial image and that of LiDAR segmentation (0.58±0.07) over all scales (10-100). Based on LiDAR data segmentation and its optimal segmentation scale of 20, the classification accuracy obtained from integration of spectral (active)+height (passive) characteristic increased 36.71% and 8.17%, respectively, comparing with the classification accuracy obtained from single characteristic of spectral feature and height feature.[Conclusion] Comparing the three segmentation schemes, the result of segmentation based on LiDAR data was the best; the classification accuracy based on integration of active and passive remote sensing was the highest (OA=87.73%, Kappa=0.81).

Key words: forest gap, scale segmentation, classification feature, LiDAR, aerial image, CHM, support vector machine(SVM)

中图分类号: