董利虎, 李凤日, 贾炜玮, 等. 2011. 含度量误差的黑龙江省主要树种生物量相容性模型. 应用生态学报, 22(10): 2653-2661.
(Dong L H, Li F R, Jia W W, et al. 2011. Compatible biomass models for main tree species with measurement error in Heilongjiang Province of northeast China. Chinese Journal of Applied Ecology, 22 (10): 2653-2661.)
董利虎, 李凤日, 贾炜玮. 2013a. 东北林区天然白桦相容性生物量模型.林业科学, 49(7): 75-85.
(Dong L H, Li F R, Jia W W. 2013a. Compatible tree biomass models for natural white birch (Betula platyphylla) in northeast China forest area. Scientia Silvae Sinicae, 49 (7): 75-85.)
董利虎, 李凤日, 贾炜玮. 2013b. 林木竞争对红松人工林立木生物量影响及模型研究. 北京林业大学学报, 35(6): 15-22.
(Dong L H, Li F R, Jia W W. 2013b. Effects of tree competition on biomass and biomass models of Pinus koraiensis plantation. Journal of Beijing Forestry University, 35 (6): 15-22.)
董利虎, 李凤日, 贾炜玮. 2013c. 黑龙江省红松人工林立木生物量估算模型的研建. 北京林业大学学报, 34(6): 16-22.
(Dong L H, Li F R, Jia W W. 2013c. Development of tree biomass model for Pinus koraiensis plantation. Journal of Beijing Forestry University, 34 (6): 16-22.)
刘 琦, 蔡慧颖, 金光泽. 2013. 择伐对阔叶红松林碳密度和净初级生产力的影响. 应用生态学报, 24 (10): 2709-2716.
(Liu Q, Cai H Y, Jin G Z. 2013. Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved- Korean pine forest in northeast China. Chinese Journal of Applied Ecology, 24(10): 2709-2716.)
唐守正, 张会儒, 胥 辉. 2000. 相容性生物量模型的建立及其估计方法研究. 林业科学, 36(专刊1): 19-27.
(Tang S Z, Zhang H R, Xu H. 2000. Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinicae, 36 (suppl.1): 19-27.)
王效科, 冯宗炜, 欧阳志云. 2001. 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 12(1): 13-16.
(Wang X K, Feng Z W, Ouyang Z Y. 2001. Vegetation carbon storage and density of forest ecosystems in China. Chinese Journal of Applied Ecology, 12 (1): 13-16.)
曾伟生, 骆期邦, 贺东北. 1999. 论加权回归与建模. 林业科学, 35 (5): 5-11.
(Zeng W S, Luo Q B, He D B. 1999. Research on weighting regression and modelling. Scientia Silvae Sinicae, 35 (5): 5-11.)
曾伟生, 唐守正. 2010. 利用度量误差模型方法建立相容性立木生物量方程系统. 林业科学研究, 23(6): 797-803.
(Zeng W S, Tang S Z. 2010. Using measurement error modeling method to establish compatible single tree biomass equations system. Forest Research, 23 (6): 797-803.)
曾伟生, 唐守正. 2011a. 立木生物量模型的优度评价和精度分析.林业科学, 47(11): 106-113.
(Zeng W S, Tang S Z. 2011a. Goodness evaluation and precision analysis of tree biomass equations. Scientia Silvae Sinicae, 47 (11):106-113.)
曾伟生, 唐守正. 2011b. 非线性模型对数回归的偏差校正及与加权回归的对比分析. 林业科学研究, 24(2): 137-143.
(Zeng W S, Tang S Z. 2011b. Bias correction in logarithm ic regression and comparison with weight regression for non-linear models. Forest Research, 24 (2): 137-143.)
Balboa-Murias M A, Rodriguez-Soalleiro R, Merino A, et al. 2006. Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. Forest Ecology and Management, 237(1/3): 29-38.
Ballantyne F. 2013. Evaluating model fit to determine if logarithmic transformations are necessary in allometry: a comment on the exchange between Packard (2009) and Kerkhoff and Enquist (2009). Journal of Theoretical Biology, 317 (2): 418.
Bi H Q, Turner J, Lambert M J. 2004. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees-Structure and Function, 18 (4): 467-479.
Bond-Lamberty B, Wang C, Gower S T. 2002. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Canadian Journal of Forest Research, 32 (8): 1441-1450.
Bond-Lamberty B, Wang C, Gower S T. 2004 Net primary production and net ecosystem production of a boreal black spruce wildfire chronosequence. Global Change Biology, 10 (4): 473-487.
Brown S. 2002. Measuring carbon in forests: current status and future challenges. Environmental Pollution, 116 (3): 363-372.
Chiyenda S S, Kozak A. 1984. Additivity of component biomass regression equations when the underlying model is linear.Canadian Journal of Forest Research, 14 (3): 441-446.
Chan N, Takeda S, Suzuki R, et al. 2013. Establishment of allometric models and estimation of biomass recovery of swidden cultivation fallows in mixed deciduous forests of the Bago Mountains, Myanmar. Forest Ecology and Management, 304 (18): 427-436.
Cunia T, Briggs R. 1984. Forcing additivity of biomass tables: some empirical results.Canadian Journal of Forest Research, 14 (3): 376-384.
Goicoa T, Militino A, Ugarte M. 2011. Modelling aboveground tree biomass while achieving the additivity property.Environmental and Ecological Statistics, 18 (2): 367-384.
Jenkins J C, Chojnacky D C, Heath L S, et al. 2003. National-scale biomass estimators for United States tree species. Forest Science, 49 (1): 12-35.
Konopka B, Pajtik J, Noguchi K, et al. 2013.Replacing Norway spruce with European beech: A comparison of biomass and net primary production patterns in young stands.Forest Ecology and Management, 302 (16): 185-192.
Lambert M C, Ung C H, Raulier F. 2005.Canadian national tree aboveground biomass equations.Canadian Journal of Forest Research, 35 (8): 1996-2018.
Lai J, Yang B, Lin D, et al. 2013. The allometry of coarse root biomass: log-transformed linear regression or nonlinear regression? PloS one, 8: e77007.
Li H K, Zhao P X. 2013. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale. Forest Ecology and Management, 289 (3): 153-163.
Madgwick H, Satoo T. 1975. On estimating the aboveground weights of tree stands. Ecology, 56 (6): 1446-1450.
Mu C C, Lu H C, Wang B, et al. 2013. Short-term effects of harvesting on carbon storage of boreal Larix gmelinii-Carex schmidtii forested wetlands in Daxing'anling, northeast China. Forest Ecology and Management, 293 (7): 140-148.
Parresol B R. 1999. Assessing tree and stand biomass: a review with examples and critical comparisons. Forest science, 45 (4): 573-593.
Parresol B R. 2001. Additivity of nonlinear biomass equations.Canadian Journal of Forest Research, 31 (5): 865-878.
Pregitzer K S, Euskirchen E S. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology, 10 (12): 2052-2077.
Quint T C, Dech J P. 2010. Allometric models for predicting the aboveground biomass of Canada yew(Taxus canadensis Marsh.)from visual and digital cover estimates. Canadian Journal of Forest Research, 40 (10): 2003-2014.
Reed D D, Green E J. 1985. A method of forcing additivity of biomass tables when using nonlinear models. Canadian Journal of Forest Research, 15 (6): 1184-1187.
SAS Institute Inc. 2011. SAS/ETS® 9.3.User's Guide. SAS Institute Inc. Cary, NC.
Tang S, Li Y, Wang Y. 2001. Simultaneous equations, error-in-variable models and model integration in systems ecology. Ecological Modelling, 142 (3): 285-294.
Wang C K. 2006. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests.Forest Ecology and Management, 222 (1/3): 9-16.
Xiao X, White E P, Hooten M B, et al. 2011. On the use of log-transformation vs. nonlinear regression for analyzing biological power laws. Ecology, 92 (10): 1887-1894.
Zianis D, Mencuccini M. 2003. Aboveground biomass relationships for beech(Fagus moesiaca Cz.)trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. Annals of Forest Science, 60 (5): 439-448.
Zianis D, Xanthopoulos G, Kalabokidis K, et al. 2011. Allometric equations for aboveground biomass estimation by size class for Pinus brutia Ten. trees growing in North and South Aegean Islands, Greece. European Journal of Forest Research, 130 (2): 145-160. |