崔瑞蕊, 杜华强,周国模,等. 2011. 近30年安吉县毛竹林动态遥感监测及碳储量变化研究. 浙江农林大学学报,28(3): 422-431.
杜凤兰,田庆久,夏学齐,等. 2004. 面向对象的地物分类法分析与评价. 遥感技术与应用,19(1): 20-24.
杜华强,周国模,葛宏立,等. 2008. 基于TM数据竹林遥感信息提取方法研究. 东北林业大学学报,36(3): 35-38.
杜华强,周国模,徐小军. 2012. 竹林生物量碳储量-遥感定量估算. 北京: 科学出版社.
关元秀,程晓阳. 2008. 高分辨率卫星影像处理指南. 北京: 科学出版社.
韩 凝,张秀英,王小明,等. 2009. 基于面向对象的IKONOS影像香榧树分布信息提取研究. 浙江农林大学学报: 农业与生命科学版,35(6): 670-676.
韩 凝. 2011. 空间信息在面向对象分类方法中的应用——以IKONOS 影像香榧树分布信息提取研究为例. 杭州: 浙江大学博士学位论文.
李春干. 2009. 面向对象的遥感图像森林分类研究与应用. 北京: 中国林业出版社.
林先成,李永树. 2010. 面向对象的成都平原多源遥感影像分割尺度研究. 测绘科学,35(4): 38-40.
牟凤云,韩 葵. 2012. 面向对象的遥感湿地植被分类与信息提取——以微山湖为例. 安徽农业科学,40(12): 7574-7576.
潘 洁,李明诗. 2010. 基于信息量的高分辨率影像纹理提取的研究. 南京林业大学学报,34(4): 129-135.
施拥军,徐小军,杜华强,等. 2008. 基于BP神经网络的竹林遥感监测研究. 浙江林学院学报, 25(4): 417-421.
徐小军. 2009. 基于LANDSAT TM影像毛竹林地上部分碳储量估算研究. 临安: 浙江林学院硕士学位论文.
徐小军,杜华强,周国模,等. 2011a. Erf-BP混合像元分解及在森林遥感信息提取中应用. 林业科学,47 (2): 30-38.
徐小军,杜华强,周国模,等. 2011b. 基于Landsat TM数据估算雷竹林地上部分生物量. 林业科学,47(9): 1-6.
颜梅春, 张友静, 鲍艳松. 2004. 基于灰度共生矩阵法的IKONOS 影像中竹林信息提取.遥感信息,(74):31-34.
张明媚. 2012. 面向对象的高分辨率遥感影像建筑物特征提取方法研究. 太原: 太原理工大学硕士学位论文.
Benz U C, Hofmann P, Willhauck G,et al. 2004. Multi-resolution,object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3/4): 239-258.
Brenner J C, Christman Z, Rogan J. 2012. Segmentation of landsat thematic mapper imagery improves buffelgrass(Pennisetum ciliare)pasture mapping in the Sonoran Desert of Mexico. Applied Geography,34: 569-575.
Congalton R G,Green K.1999. Assessing the accuracy of remotely sensed data: principles and practices.New York: Lewis Publishers.
Curran P J. 1988. The semivariogram in remote sensing: an introduction. Remote Sensing of Environment,24(3): 493-507.
Du H, Fan W, Zhou G,et al. 2011. Retrieval of the canopy closure and leaf area index of moso bamboo forest using spectral mixture analysis based on the real scenario simulation. IEEE Transactions on Geoscience and Remote Sensing,49(11): 4328-4340.
Flanders D,Hall-Beyer M,Pereverzoff J. 2003. Preliminary evaluation of eCoginition object-based software for cut block delineation and feature extraction. Canadian Journal of Remote Sensing,29(4): 441-452.
Franklin S E,Wulder M A,Lavigne M B. 1996. Automated derivation of geographic windows for use in remote sensing digital image analysis. Computers and Geosciences,22(6): 665-673.
Hall O,Hay G J,Bouchard A,et al. 2004. Detecting dominant landscape objects through multiple scales: an integration of object-specific methods and watershed segmentation. Landscape Ecology,19(1): 59-76.
Han N, Wang K,Yu L,et al. 2011. Integration of texture and landscape features into object-based classification for delineating Torreya using IKONOS imagery. International Journal of Remote Sensing,33(7): 2003-2033.
Haralick R M,Shanmugam K,Dinstein I,et al. 1973. Textual features for image classification. IEEE Trans on Systems,SMC-3(6): 610-621.
Kosaka N,Akiyama T,Tsai B,et al. 2005. Forest classification using data fusion of multispectral and panchromatic high-resolution satellite imageries. International Geoscience and Remote Sensing Symposium,4: 2980-2983.
Lian L,Chen J. 2011.Research on segmentation scale of multi-resources remote sensing data based on object-oriented. Procedia Earth and Planetary Science, 2: 352-357.
Mallinis G, Koutsias N, Tsakiri-Strati M,et al. 2008. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS Journal of Photogrammetry and Remote Sensing,63(2): 237-250.
Xu X,Du H,Zhou G,et al. 2011. Estimation of aboveground carbon stock of moso bamboo(Phyllostachys heterocycla var. pubescens)forest with a landsat thematic mapper image. International Journal of Remote Sensing, 32(5): 1431-1448.
Zhou G, Xu X,Du H,et al. 2011. Estimating moso bamboo forest attributes using the k nearest neighbors technique and satellite imagery.Photogrammetric Engineering and Remote Sensing(PE&RS),77(11): 1123-1131. |