林业科学 ›› 2023, Vol. 59 ›› Issue (11): 124-136.doi: 10.11707/j.1001-7488.LYKX20220250
• 综合评述 • 上一篇
游韧1(),邓湘雯1,2,3,*(
),胡彦婷1,2,3,欧阳帅1,2,3,陈亮1,2,3,项文化1,2,3
收稿日期:
2022-04-07
出版日期:
2023-11-25
发布日期:
2023-12-08
通讯作者:
邓湘雯
E-mail:525999711@qq.com;dxwfree@126.com
基金资助:
Ren You1(),Xiangwen Deng1,2,3,*(
),Yanting Hu1,2,3,Shuai Ouyang1,2,3,Liang Chen1,2,3,Wenhua Xiang1,2,3
Received:
2022-04-07
Online:
2023-11-25
Published:
2023-12-08
Contact:
Xiangwen Deng
E-mail:525999711@qq.com;dxwfree@126.com
摘要:
树木在干旱胁迫下的死亡是一个重要的生理生态过程,不仅可以改变森林的结构和功能,还可能影响森林管理决策。在干旱胁迫条件下,树木体内水分代谢与碳代谢会出现失效现象,从而导致树木的死亡。但是在干旱胁迫环境下,树木死亡的生理机制以及干旱—复水过程中树木各个器官的生理生态响应还未探明,这一科学问题也是当前世界的前沿问题。树木的干旱致死机制至少有3种假说:水力失效、碳饥饿和生物攻击假说。水力失效假说认为在干旱胁迫环境下,树木木质部栓塞达到阈值后无法恢复水分传导从而使得树木脱水干燥死亡;碳饥饿假说认为树木在干旱胁迫环境下,气孔紧缩甚至关闭,树木不能进行光合作用产生有机物,但树木为了维持自身正常的生长发育及新陈代谢,使得树木自身可利用碳耗竭;生物攻击假说认为干旱胁迫影响生物因子的分布及生长速率等,使得树木易受到昆虫和病原体的攻击,从而导致树木的死亡。3种假说都已经被证实可以解释一部分树木死亡的现象,但是又不足以解释所有树木在干旱胁迫环境下死亡的现象,特别是非结构性碳水化合物的损耗在死亡过程中的作用仍不清楚。本文介绍干旱胁迫下的水分关系,对水力失效假说中木质部栓塞具体的生理过程进行整体阐述。然后,讨论长期干旱胁迫对树木生长发育、蒸腾作用的影响,以及由此产生的非结构性碳水化合物动态变化,探讨干旱致死过程中树木各个器官生理机制,并总结干旱—复水过程中树木的生理生态变化的研究进展。研究表明,水力失效假说仍然是干旱胁迫下树木死亡的主要假说,而树木体内非结构性有机碳的变化对树木死亡的贡献率未确定。干旱后复水能够使植物的生理功能得到恢复,可在一定程度上弥补干旱对植物造成的伤害, 对树木的形态特征、生理特征都造成影响。本文还对未来树木死亡的研究方向提出建议,旨在为今后树木的合理种植经营提供建议。
中图分类号:
游韧,邓湘雯,胡彦婷,欧阳帅,陈亮,项文化. 树木对干旱胁迫及复水的生理生态响应研究进展[J]. 林业科学, 2023, 59(11): 124-136.
Ren You,Xiangwen Deng,Yanting Hu,Shuai Ouyang,Liang Chen,Wenhua Xiang. Progress on Physiological and Ecological Responses of Trees to Drought Stress and Rewatering[J]. Scientia Silvae Sinicae, 2023, 59(11): 124-136.
陈志成, 陆海波, 刘世荣, 等. 2018. 锐齿栎水力结构和生长对降雨减少的响应. 生态学报, 38(7): 2405-2413. | |
Chen Z C, Lu H B, Liu S R, et al. 2018. The responses of hydraulic architecture and growth of Quercus aliena to rainfall reduction. Acta Ecologica Sinica 38(7): 2405-2413. [in Chinese] | |
陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展. 植物生态学报, 2016, 40 (9): 958- 968.
doi: 10.17521/cjpe.2015.0443 |
|
Chen Z C, Wan X C. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees. Chinese Journal of Plant Ecology, 2016, 40 (9): 958- 968.
doi: 10.17521/cjpe.2015.0443 |
|
代永欣, 王 林, 王延书, 等. 摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响. 植物科学学报, 2017a, 35 (5): 750- 758. | |
Dai Y X, Wang L, Wang Y S, et al. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. Seedlings . Plant Science Journal, 2017a, 35 (5): 750- 758. | |
代永欣, 王 林, 万贤崇. 遮荫和环剥对刺槐、侧柏苗木碳素分配和水力学特性的影响. 林业科学, 2017b, 53 (7): 37- 44. | |
Dai Y X, Wang L, Wan X C. Effects of Shading and Girdling on Carbon Allocation and Hydraulic Architecture of Robinia pseudoacacia and Platycladus orientalis Seedlings . Scientia Silvae Sinicae, 2017b, 53 (7): 37- 44. | |
董建芳, 李春红, 刘果厚, 等. 内蒙古6种沙生柳树叶片解剖结构的抗旱性分析. 中国沙漠, 2009, 29 (3): 480- 484. | |
Dong J F, Li C H, Liu G H, et al. Analysis of drought resistance by leaf anatomical structure of six species of sandy willows. Journal of Desert Research, 2009, 29 (3): 480- 484. | |
段洪浪, 吴建平, 刘文飞, 等. 干旱胁迫下树木的碳水过程以及干旱死亡机理. 林业科学, 2015, 51 (11): 113- 120. | |
Duan H L, Wu J P, Liu W F, et al. Water relations and carbon dynamics under drought stress and the mechanisms of drought-induced tree mortality. Scientia Silvae Sinicae, 2015, 51 (11): 113- 120. | |
郭建荣, 万贤崇. 杨树根压昼夜周期性及其影响因子. 植物生态学报, 2017a, 41 (3): 369- 377.
doi: 10.17521/cjpe.2016.0098 |
|
Guo J R, Wan X C. Circadian rhythm of root pressure in Poplar and its driving factors . Chinese Journal of Plant Ecology, 2017a, 41 (3): 369- 377.
doi: 10.17521/cjpe.2016.0098 |
|
郭建荣, 万贤崇. 杨树苗木完整植株根压的昼夜节律及其影响因素. 林业科学, 2017b, 53 (10): 22- 28. | |
Guo J R, Wan X C. Circadian rhythm of root pressure in intact Poplar Seedlings and the influencing factors . Scientia Silvae Sinicae, 2017b, 53 (10): 22- 28. | |
韩旭丽, 赵明水, 王忠媛, 等. 三种裸子植物木质部结构与功能对不同生境的适应. 植物生态学报, 2022, 46 (4): 440- 450.
doi: 10.17521/cjpe.2021.0186 |
|
Han X L, Zhao M S, Wang Z Y, et al. Adaptation of xylem structure and function of three gymnosperms to different habitats. Chinese Journal of Plant Ecology, 2022, 46 (4): 440- 450.
doi: 10.17521/cjpe.2021.0186 |
|
胡田田, 康绍忠. 植物抗旱性中的补偿效应及其在农业节水中的应用. 生态学报, 2005, 25 (4): 885- 891. | |
Hu T T, Kang S Z. The compensatory effect in drought resistance of plants and its application in water-saving agriculture. Acta Ecologica Sinica, 2005, 25 (4): 885- 891. | |
胡彦婷, 赵 平, 牛俊峰, 等. 三种植被恢复树种的冠层气孔导度特征及其对环境因子的敏感性. 应用生态学报, 2015, 26 (9): 2623- 2631. | |
Hu Y T, Zhao P, Niu J F, et al. Characteristics of canopy stomatal conductance in plantations of three re-vegetation tree species and its sensitivity to environmental factors. Chinese Journal of Applied Ecology, 2015, 26 (9): 2623- 2631. | |
李鸿雁, 李悦煊, 扈 顺. 不同百脉根品系叶片解剖结构特征分析及抗旱性评价. 中国草地学报, 2020, 42 (6): 37- 43. | |
Li H Y, Li Y X, Hu S. Analysis of leaf anatomical structure characteristics and drought resistance evaluation of four strains of Lotus corniculatus . Chinese Journal of Grassland, 2020, 42 (6): 37- 43. | |
刘 静, 魏开发, 高志晖, 等. 干旱胁迫下氮素营养与根信号在气孔运动调控中的协同作用. 植物学通报, 2008, 25 (1): 34- 40. | |
Liu J, Wei K F, Gao Z H, et al. Nitrate as an enhancer of root signal in the regulation of stomatal movement in plants under drought stress. Chinese Bulletin of Botany, 2008, 25 (1): 34- 40. | |
刘丽燕, 冯锦霞, 刘文鑫, 等. 干旱胁迫对转PtPIP2; 8基因84K杨苗木光合、生长和根系结构的影响. 植物生态学报, 2020, 44 (6): 677- 686.
doi: 10.17521/cjpe.2020.0058 |
|
Liu L Y, Feng J X, Liu W X, et al. Effects of drought stress on photosynthesis, growth and root structure of transgenic PtPIP2; 8 poplar 84K (Populus alba × P. glandulosa) . Chinese Journal of Plant Ecology, 2020, 44 (6): 677- 686.
doi: 10.17521/cjpe.2020.0058 |
|
陆世通, 陈 森, 李 彦, 等. 罗汉松科3种植物茎和根木质部水分运输、解剖结构与机械强度之间的关系. 植物生态学报, 2021, 45 (6): 659- 669.
doi: 10.17521/cjpe.2020.0402 |
|
Lu S T, Chen S, Li Y, et al. Relationships among xylem transport, anatomical structure and mechanical strength in stems and roots of three Podocarpaceae species . Chinese Journal of Plant Ecology, 2021, 45 (6): 659- 669.
doi: 10.17521/cjpe.2020.0402 |
|
罗丹丹, 王传宽, 金 鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
Luo D D, Wang C K, Jin Y. Plant water-regulation strategies: Isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 2017, 41 (9): 1020- 1032.
doi: 10.17521/cjpe.2016.0366 |
|
马 玥, 苏宝玲, 韩艳刚等. 岳桦幼苗光合特性和非结构性碳水化合物积累对干旱胁迫的响应. 应用生态学报, 2021, 32 (2): 513- 520. | |
Ma Y, Su B L, Han Y G. Response of photosynthetic characteristics and non-structural carbohydrate accumulation of Betula ermanii seedlings to drought stress . Chinese Journal of Applied Ecology, 2021, 32 (2): 513- 520. | |
蒙祖庆, 宋丰萍, 刘振兴, 等. 干旱及复水对油菜苗期光合及叶绿素荧光特性的影响. 中国油料作物学报, 2012, 34 (1): 40- 47. | |
Meng Z Q, Song F P, Liu Z X, et al. Effects of drought and rewatering at seedling stage on photosynthesis and chlorophyll fluorescence characteristics in rapeseed. Chinese journal of oil crop sciences, 2012, 34 (1): 40- 47. | |
潘天天, 李 彦, 王忠媛, 等. 湿润区3种杉科植物枝和根木质部的水力功能与解剖结构的关系. 林业科学, 2020, 56 (12): 49- 59. | |
Pan T T, Li Y, Wang Z Y, et al. Relationship between the hydraulic function and the anatomical structure of branch and root xylem in three taxodiaceae species in humid area. Scientia Silvae Sinicae, 2020, 56 (12): 49- 59. | |
沈 超, 纪若璇, 于 笑, 等. 蒙古莸幼苗干旱致死过程中非结构性碳水化合物的变化. 应用生态学报, 2019, 30 (8): 2541- 2548. | |
Shen C, Ji R X, Yu X, et al. Changes of non-structural carbohydrates in Caryopteris mongolica seedlings during the process of drought-induced mortality . Chinese Journal of Applied Ecology, 2019, 30 (8): 2541- 2548. | |
陶 佳, 石 佩, 乔恒波, 等. 干旱条件下断根对苹果幼树生长和光合特性的影响. 北方园艺, 2015, (16): 36- 39. | |
Tao J, Shi P, Qiao H B, et al. Effect of root pruning on the growth and photosynthesis of young apple tree in drought area. Northern Horticulture, 2015, (16): 36- 39. | |
万贤崇, 孟 平. 植物体内水分长距离运输的生理生态学机制. 植物生态学报, 2007, 31 (5): 804- 813. | |
Wan X C, Meng P. Physiological and ecological mechanisms of long-distance water transport in plants: a review of recent issues. Journal of Plant Ecology, 2007, 31 (5): 804- 813. | |
王 凯, 逄迎迎, 吕林有, 等. 杨树幼苗自然干旱过程中非结构性碳水化合物变化. 生态学杂志, 2021, 40 (7): 1969- 1978. | |
Wang K, Pang Y Y, Lv L Y, et al. Changes of non-structural carbohydrates of Populus × xiaozhuanica cv. Zhangwu seedlings during process of natural drought . Chinese Journal of Ecology, 2021, 40 (7): 1969- 1978. | |
王 林, 代永欣, 郭晋平, 等. 刺槐苗木干旱胁迫过程中水力学失败和碳饥饿的交互作用. 林业科学, 2016, 52 (6): 1- 9. | |
Wang L, Dai Y X, Guo Ji P, et al. Interaction of hydraulic failure and carbon starvation on Robinia pseudoacacia Seedlings During Drought . Scientia Silvae Sinicae, 2016, 52 (6): 1- 9. | |
王振夏, 魏 虹, 吕 茜, 等. 枫杨幼苗对土壤水分“湿-干”交替变化的光合及叶绿素荧光响应. 生态学报, 2013, 33 (3): 0888- 0897.
doi: 10.5846/stxb201204240589 |
|
Wang Z X, Wei H, Lv Q, et al. Response of photosynthesis and chlorophyll fluorescence characteristics of Pterocarya stenoptera seedlings to submergence and drought alternation . Acta Ecologica Sinica, 2013, 33 (3): 0888- 0897.
doi: 10.5846/stxb201204240589 |
|
韦景树, 李宗善, 冯晓玙, 等. 黄土高原人工刺槐林生长衰退的生态生理机制. 应用生态学报, 2018, 29 (7): 2433- 2444. | |
Wei J S, Li Z S, Feng X Y, et al. Ecological and physiological mechanisms of growth decline of Robinia pseudoacacia plantations in the Loess Plateau of China: a review . Chinese Journal of Applied Ecology, 2018, 29 (7): 2433- 2444. | |
吴海江, 粟晓玲, 张更喜. 基于Meta-Gaussian模型的中国农业干旱预测研究. 地理学报, 2021, 76 (3): 525- 538. | |
Wu H J, Su X L, Zhang G X. Prediction of agricultural drought in China based on Meta-Gaussian model. Acta Geographica Sinica, 2021, 76 (3): 525- 538. | |
熊仕发, 吴立文, 陈益存, 等. 不同种源白栎幼苗叶片对干旱胁迫的响应及抗旱性评价. 生态学杂志, 2020, 39 (12): 3924- 3933. | |
Xiong S F, Wu L W, Chen Y C, et al. Response of leaf of Quercus fabri seedlings from different provenances to drought stress and drought resistance evaluation . Chinese Journal of Ecology, 2020, 39 (12): 3924- 3933. | |
闫 明, 刘志萍, Mukti Ram Subedi, 等. 特大干旱对树木死亡的影响——以美国德克萨斯州东部森林为例. 生态学报, 2022, 42 (3): 1034- 1046. | |
Yan M, Liu Z P, Mukti Ram Subedi, et al. The complex impacts of unprecedented drought on forest tree mortality: a case study of dead trees in east Texas, USA. Acta Ecologica Sinica, 2022, 42 (3): 1034- 1046. | |
颜佳滢, 吴志峰, 申 健, 等. 未来气候变化对粤港澳地区杜鹃花适生区的影响. 生态学报, 2022, 42 (13): 5481- 5492. | |
Yan J Y, Wu Z F, Shen J, et al. Effect of future climate change on suitable areas of Rhododendrons in Guangdong-Hong Kong-Macao region . Acta Ecologica Sinica, 2022, 42 (13): 5481- 5492. | |
杨冬梅, 章佳佳, 周 丹, 等. 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 2012, 31 (3): 702- 713. | |
Yang D M, Zhang J J, Zhou D, et al. Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 2012, 31 (3): 702- 713. | |
张玉玉, 王进鑫, 马 戌, 等. 2021a. 不同干旱胁迫历时及复水对侧柏叶绿素荧光的影响. 江苏农业科学, 49(14): 127−132. | |
Zhang Y Y, Wang J X, Ma X, et al. 2021a. Effects of different drought stress duration and rehydration on chlorophyll fluorescence of Platycladus orientalis, Jiangsu Agricultural Sciences, 49(14): 127−132. [in Chinese] | |
张玉玉, 王进鑫, 马 戌, 等. 土壤干旱及复水对侧柏叶绿素荧光参数的影响. 水土保持研究, 2021b, 28 (2): 242- 247+255. | |
Zhang Y Y, Wang J X, Ma X, et al. Effects of drought and rewatering on chlorophyll fluorescence parameters of Platycladus orientalis . Research of Soil and Water Conservation, 2021b, 28 (2): 242- 247+255. | |
赵高卷, 平 盼, 马焕成. 干热河谷木棉科三种植物根茎叶水分传输的解剖结构比较研究. 干旱区资源与环境, 2016, 30 (1): 162- 168. | |
Zhao G J, Ping P, Ma H C. Comparison of moisture transmission anatomical structure of three kinds of Bombacaceae plants in the dry-hot valleys . Journal of Arid Land Resources and Environment, 2016, 30 (1): 162- 168. | |
赵军营, 李绍华, 代占武, 等. 半根和全根干旱对嘎拉苹果组培苗渗透调节物质积累的影响. 西北植物学报, 2005, 25 (12): 2484- 2489.
doi: 10.3321/j.issn:1000-4025.2005.12.020 |
|
Zhao J Y, Li S H, Dai Z W, et al. Effects of half-and whole-rhizoshpere droughts on osmosis- regulating substances in In Vitro Seedlings of gala Apple (Malus pumila Mill. ) . Acta Botanica Boreali-occidentalia Sinica, 2005, 25 (12): 2484- 2489.
doi: 10.3321/j.issn:1000-4025.2005.12.020 |
|
赵军营, 王利军, 范培格, 等. 半根交替干旱对‘大久保’桃叶片中几种有机渗透调节物质的影响. 园艺学报, 2006, 33 (4): 801- 804. | |
Zhao J Y, Wang L J, Fan P G, et al. Effects of alternative half root drying on accumulation of several organic osmolytes in “Okubo” peach leaves. Acta Horticulturae Sinica, 2006, 33 (4): 801- 804. | |
赵 祥, 董宽虎, 张 垚, 等. 达乌里胡枝子根解剖结构与其抗旱性的关系. 草地学报, 2011, 19 (1): 13- 19. | |
Zhao X, Dong K H, Zhang Y, et al. Drought Resistance and Root Anatomy of Lespedeza davurica (Laxm. ) Schindl . Acta Agrestia Sinica, 2011, 19 (1): 13- 19. | |
周贵尧, 周灵燕, 邵钧炯, 等. 极端干旱对陆地生态系统的影响: 进展与展望. 植物生态学报, 2020, 44 (5): 515- 525.
doi: 10.17521/cjpe.2019.0317 |
|
Zhou G Y, Zhou L Y, Shao J J, et al. Effects of extreme drought on terrestrial ecosystems: review and prospects. Chinese Journal of Plant Ecology, 2020, 44 (5): 515- 525.
doi: 10.17521/cjpe.2019.0317 |
|
Acevedo E, Hsiao T C, Henderson D W. Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiology, 1971, 48 (5): 631- 636.
doi: 10.1104/pp.48.5.631 |
|
Adams H D, Guardiola-Claramonte M, Barron-Gafford G A, et al. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (17): 7063- 7066. | |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010, 259 (4): 660- 684.
doi: 10.1016/j.foreco.2009.09.001 |
|
Anderegg W R L, Berry J A, Smith D D, et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109 (1): 233- 237. | |
Arango-Velez A, Zwiazek J J, Thomas B R, et al. Stomatal factors and vulnerability of stem xylem to cavitation in poplars. Physiologia Plantarum, 2011, 143 (2): 154- 165.
doi: 10.1111/j.1399-3054.2011.01489.x |
|
Bogardi J J, Dudgeon D, Lawford R, et al. Water security for a planet under pressure: interconnected challenges of a changing world call for sustainable solutions. Current Opinion in Environmental Sustainability, 2012, 4 (1): 35- 43.
doi: 10.1016/j.cosust.2011.12.002 |
|
Brodribb T J, Cochard H. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 2009, 149 (1): 575- 584.
doi: 10.1104/pp.108.129783 |
|
Brodribb T J, Skelton R P, McAdam S A M, et al. Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytologist, 2016, 209 (4): 1403- 1409.
doi: 10.1111/nph.13846 |
|
Charrier G, Torres-Ruiz J M, Badel E, et al. Evidence for hydraulic vulnerability segmentation and lack of xylem refilling under tension. Plant Physiology, 2016, 172 (3): 1657- 1668.
doi: 10.1104/pp.16.01079 |
|
Chen X, Zhao P, Ouyang L, et al. Whole-plant water hydraulic integrity to predict drought-induced Eucalyptus urophylla mortality under drought stress . Forest Ecology and Management, 2020, 468 (17): 118179. | |
Chen Z C, Li S, Luan J W, et al. Prediction of temperate broadleaf tree species mortality in arid limestone habitats with stomatal safety margins. Tree Physiology, 2019, 39 (8): 1428- 1437.
doi: 10.1093/treephys/tpz045 |
|
Choat B, Jansen S, Brodribb T J, et al. Global convergence in the vulnerability of forests to drought. Nature, 2012, 491 (7426): 752- 755.
doi: 10.1038/nature11688 |
|
Correia B, Pintó-Marijuan M, Neves L, et al. Water stress and recovery in the performance of two Eucalyptus globulus clones: physiological and biochemical profiles . Physiologia Plantarum, 2014, 150 (4): 580- 592.
doi: 10.1111/ppl.12110 |
|
Creech D, Zhou L J, Yin Y L, et al. 2011. Can Taxodium be improved? Arnoldia, 69(2): 11-20. | |
DaCosta M, Huang B R. Deficit irrigation effects on water use characteristics of bentgrass species. Crop Science, 2006, 46 (4): 1779- 1786.
doi: 10.2135/cropsci2006.01-0043 |
|
Dai A G. Increasing drought under global warming in observations and models. Nature Climate Change, 2013, 3 (1): 52- 58.
doi: 10.1038/nclimate1633 |
|
Dai Y X, Wang L, Wan X C. Relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality caused by drought. AoB PLANTS, 2018, 10 (1): plx069. | |
Gallé A, Feller U. Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery . Physiologia Plantarum, 2007, 131 (3): 412- 421.
doi: 10.1111/j.1399-3054.2007.00972.x |
|
Garcia-Forner N, Adams H D, Sevanto S, et al. 2016. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Plant, Cell & Environment, 39(1): 38-49. | |
Gomez-del-Campo M, Baeza P, Ruiz C, et al. Effect of previous water conditions on vine response to rewatering. Vitis:Journal of Grapevine Research, 2007, 46 (2): 51- 56. | |
Hájíčková M, Plichta R, Volařík D, et al. Effects of drought and rewatering on growth and transpiration in European beech seedlings late in the growing season. New Forests, 2017, 48 (6): 773- 784.
doi: 10.1007/s11056-017-9596-2 |
|
Hu Y T, Duman T, Vanderklein D, et al. A stomatal optimization approach improves the estimation of carbon assimilation from sap flow measurements. Agricultural and Forest Meteorology, 2019, 279 (C): 107735. | |
Hu Y T, Gao J G, Zhao P, et al. Water transport of native and exotic tree species in relation to xylem anatomical characteristics in low subtropical China. Journal of Plant Ecology, 2018a, (3): 423- 433. | |
Hu Y T, Xiang W H, Schäfer K V R, et al. Photosynthetic and hydraulic traits influence forest resistance and resilience to drought stress across different biomes. Science of the Total Environment, 2022, 828, 154517.
doi: 10.1016/j.scitotenv.2022.154517 |
|
Hu Y T, Zhao P, Shen W J, et al. Responses of tree transpiration and growth to seasonal rainfall redistribution in a subtropical evergreen broad-leaved forest. Ecosystems, 2018b, 21 (4): 811- 826.
doi: 10.1007/s10021-017-0185-1 |
|
Huang Y Q, Deng X W, Zhao Z H, et al. Monthly radial growth model of Chinese fir (Cunninghamia lanceolata (lamb. ) hook. ), and the relationships between radial increment and climate factors . Forests, 2019, 10 (9): 757.
doi: 10.3390/f10090757 |
|
IPCC. 2021. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. | |
Jiang G F, Li S Y, Li Y C, et al. Coordination of hydraulic thresholds across roots, stems, and leaves of two co-occurring mangrove species. Plant Physiology, 2022, 189 (4): 2159- 2174.
doi: 10.1093/plphys/kiac240 |
|
Johnson K M, Jordan G J, Brodribb T J. 2018. Wheat leaves embolized by water stress do not recover function upon rewatering. Plant, Cell & Environment, 41(11): 2704-2714. | |
Kaldenhoff R, Fischer M. Aquaporins in plants. Acta Physiologica (Oxford, 2006, England),187 (1/2): 169- 176. | |
Kauwe M G D, Medlyn B E, Tissue D T. 2021. To what extent can rising [CO2] ameliorate plant drought stress? New Phytologist, 231(6): 2118-2124. | |
Kharuk V I, Shushpanov A S, Petrov I A, et al. Fir (Abies sibirica ledeb.) mortality in mountain forests of the eastern Sayan ridge, Siberia . Contemporary Problems of Ecology, 2019, 12 (4): 299- 309.
doi: 10.1134/S199542551904005X |
|
Klein T, Cohen S, Yakir D. Hydraulic adjustments underlying drought resistance of Pinus halepensis . Tree Physiology, 2011, 31 (6): 637- 648.
doi: 10.1093/treephys/tpr047 |
|
Kono Y, Ishida A, Saiki S T, et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis . Communications Biology, 2019, 2 (1): 8.
doi: 10.1038/s42003-018-0256-7 |
|
Lauriano J A, Ramalho J C, Lidon F C, et al. Peanut photosynthesis under drought and re-watering. Photosynthetica, 2004, 42 (1): 37- 41.
doi: 10.1023/B:PHOT.0000040567.42444.c2 |
|
Li M H, Xiao W F, Shi P, et al. 2008. Nitrogen and carbon source-sink relationships in trees at the Himalayan tree lines compared with lower elevations. Plant, Cell & Environment, 31(10): 1377-1387. | |
Li M, Wang Y L, Adeli A, et al. Effects of application methods and urea rates on ammonia volatilization, yields and fine root biomass of alfalfa. Field Crops Research, 2018, 218, 115- 125.
doi: 10.1016/j.fcr.2018.01.011 |
|
Li Q, Wang N, Liu X, et al. Growth and physiological responses to successional water deficit and recovery in four warm-temperate woody species. Physiologia Plantarum, 2019, 167 (4): 645- 660.
doi: 10.1111/ppl.12922 |
|
Li S, Feifel M, Karimi Z, et al. Leaf gas exchange performance and the lethal water potential of five European species during drought. Tree Physiology, 2016, 36 (2): 179- 192. | |
Limousin J M, Bickford C P, Dickman L T, et al. 2013. Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes. Plant, Cell & Environment, 36(10): 1812-1825. | |
Liu X Y, Luo Y P, Shi Y C. The stimulating effects of rewatering in subjecting to water stress on leaf area of winter wheat. Agricultural Sciences in China, 2001, 1 (2): 177- 183. | |
Mantova M, Stéphane. Herbette, Hervé. Cochard, et al. Hydraulic failure and tree mortality: from correlation to causation. Trends in Plant Science, 2022, 27, 335- 345.
doi: 10.1016/j.tplants.2021.10.003 |
|
Marron N, Dreyer E, Boudouresque E, et al. Impact of successive drought and re-watering cycles on growth and specific leaf area of two Populus × canadensis (Moench) clones, ‘Dorskamp’ and ‘Luisa_Avanzo’ . Tree Physiology, 2003, 23 (18): 1225- 1235.
doi: 10.1093/treephys/23.18.1225 |
|
Marshall J D, Waring R H. Predicting fine root production and turnover by monitoring root starch and soil temperature. Canadian Journal of Forest Research, 1985, 15 (5): 791- 800.
doi: 10.1139/x85-129 |
|
Martin-StPaul N, Delzon S, Cochard H. Plant resistance to drought depends on timely stomatal closure. Ecology Letters, 2017, 20 (11): 1437- 1447.
doi: 10.1111/ele.12851 |
|
McDowell N, Pockman W T, Allen C D, et al. 2008. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytologist, 178(4): 719-739. | |
Meinzer F C, McCulloh K A. 2013. Xylem recovery from drought-induced embolism: where is the hydraulic point of no return? Tree Physiology, 33(4): 331-334. | |
Obladen N, Dechering P, Skiadaresis G, et al. Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany. Agricultural and Forest Meteorology, 2021, 307 (8): 108482. | |
Pausas J G, Pratt R B, Keeley J E, et al. Towards understanding resprouting at the global scale. New Phytologist, 2016, 209 (3): 945- 954.
doi: 10.1111/nph.13644 |
|
Phillips O L, Aragqo L E O C, Lewis S L, et al. Drought sensitivity of the amazon rainforest. Science, 2009, 323 (5919): 1344- 1347. | |
Pivovaroff A L, Sack L, Santiago L S. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 2014, 203 (3): 842- 850.
doi: 10.1111/nph.12850 |
|
Pou A, Flexas J, del Mar Alsina M, et al. Adjustments of water use efficiency by stomatal regulation during drought and recovery in the drought-adapted Vitis hybrid Richter-110 (V. berlandieri × V. rupestris) . Physiologia Plantarum, 2008, 134 (2): 313- 323.
doi: 10.1111/j.1399-3054.2008.01138.x |
|
Rowland L, da Costa A C L, Galbraith D R, et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature, 2015, 528 (7580): 119- 122.
doi: 10.1038/nature15539 |
|
Salmon Y, Torres-Ruiz J M, Poyatos R, et al. 2015. Balancing the risks of hydraulic failure and carbon starvation: a twig scale analysis in declining Scots pine. Plant, Cell & Environment, 38(12): 2575-2588. | |
Savi T, Casolo V, Dal Borgo A, et al. Drought-induced dieback of Pinus nigra: a tale of hydraulic failure and carbon starvation . Conservation Physiology, 2019, 7 (1): coz012. | |
Savi T, Casolo V, Luglio J, et al. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars. Plant Physiology and Biochemistry, 2016, 106, 198- 207.
doi: 10.1016/j.plaphy.2016.04.051 |
|
Scholl M A, Bassiouni M, Torres-Sánchez A J. 2021. Drought stress and hurricane defoliation influence mountain clouds and moisture recycling in a tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 118(7). | |
Sevanto S, McDowell N G, Dickman L T, et al. 2014. How do trees Die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, Cell & Environment, 37(1): 153-161. | |
Skelton R P, West A G, Dawson T E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (18): 5744- 5749. | |
Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery . Environmental and Experimental Botany, 2004, 51 (1): 45- 56.
doi: 10.1016/S0098-8472(03)00059-5 |
|
Sun Q H, Miao C Y, Qiao Y Y, et al. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale. Climate Dynamics, 2017, 49 (11): 4281- 4292. | |
Trifilò P, Casolo V, Raimondo F, et al. Effects of prolonged drought on stem non-structural carbohydrates content and post-drought hydraulic recovery in Laurus nobilis L. : the possible link between carbon starvation and hydraulic failure. Plant Physiology and Biochemistry, 2017, 120, 232- 241.
doi: 10.1016/j.plaphy.2017.10.003 |
|
Trugman A T, Anderegg L D L, Anderegg W R L, et al. 2021. Why is tree drought mortality so hard to predict? Trends in Ecology & Evolution, 36(6): 520-532. | |
Tyree, M.T., Graham, M.E.D., Cooper, K.E. & Bazos, L.J. (1983) The hydraulic architecture of Thuja occidentalis. Canadian Journal of Botany, 61, 2105–2111. | |
Venturas M D, Todd H N, Trugman A T, et al. Understanding and predicting forest mortality in the western United States using long-term forest inventory data and modeled hydraulic damage. New Phytologist, 2021, 230 (5): 1896- 1910.
doi: 10.1111/nph.17043 |
|
Wang C G, Brunner I, Guo W, et al. Effects of long-term water reduction and nitrogen addition on fine roots and fungal hyphae in a mixed mature Pinus koraiensis forest . Plant and Soil, 2021, 467 (1): 451- 463. | |
Westoby M, Wright I J. Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 2006, 21 (5): 261- 268. | |
Xie J B, Wang Z Y, Li Y. Stomatal opening ratio mediates trait coordinating network adaptation to environmental gradients. New Phytologist, 2022, 235 (3): 907- 922.
doi: 10.1111/nph.18189 |
|
Xu Z Z, Zhou G S, Shimizu H. Plant responses to drought and rewatering. Plant Signaling & Behavior, 2010, 5 (6): 649- 654. | |
Zadworny M, Eissenstat D M. Contrasting the morphology, anatomy and fungal colonization of new pioneer and fibrous roots. New Phytologist, 2011, 190 (1): 213- 221.
doi: 10.1111/j.1469-8137.2010.03598.x |
|
Zang U, Goisser M, Häberle K H, et al. Effects of drought stress on photosynthesis, rhizosphere respiration, and fine-root characteristics of beech saplings: A rhizotron field study. Journal of Plant Nutrition & Soil Science, 2013, 177 (2): 168- 177. | |
Zeppel M J B, Adams H D. and Anderegg W R L. Mechanistic causes of tree drought mortality: recent results, unresolved questions and future research needs. New Phytologist, 2011, 192, 800- 803.
doi: 10.1111/j.1469-8137.2011.03960.x |
|
Zeppel M J B, Anderegg W R L, Adams H D, et al. Embolism recovery strategies and nocturnal water loss across species influenced by biogeographic origin. Ecology and Evolution, 2019, 9, 5348- 5361. | |
Zhao Y, Deng X W, Xiang W H, et al. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics, 2021, 64 (15): 101393- 101397. | |
Zheng H F, Zhang X, Ma W J, et al. Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei . Environmental and Experimental Botany, 2017, 138, 77- 87.
doi: 10.1016/j.envexpbot.2017.02.016 |
|
Zhu S D, Li R H, He P C, et al. Large branch and leaf hydraulic safety margins in subtropical evergreen broadleaved forest. Tree Physiology, 2019, 39 (8): 1405- 1415.
doi: 10.1093/treephys/tpz028 |
[1] | 程鑫,吴纯泽,韦庆钰,李伟,卫星. 水曲柳丛枝菌根真菌接菌苗对干旱胁迫的生长和生理响应[J]. 林业科学, 2023, 59(2): 58-66. |
[2] | 林庆芝,朱祥元,毛培利,朱琳,郭龙梅,李泽秀,曹帮华,郝迎东,谭海涛,洪丕征,卢小军. NaCl和PEG胁迫对不同大小刺槐种子萌发和幼苗生长的影响[J]. 林业科学, 2022, 58(2): 100-112. |
[3] | 姚俊广,耿娅,刘依静,安轶,黄李超,曾为,卢孟柱. S-腺苷甲硫氨酸脱羧酶基因对银腺杨84K抗旱性的影响[J]. 林业科学, 2022, 58(2): 125-132. |
[4] | 韩大校,韦睿,王晓红,丛日征,邸雪颖,杨光,蔡慧颖,张吉利. 林火导致树木死亡的作用机制和影响因素的研究进展[J]. 林业科学, 2020, 56(7): 151-162. |
[5] | 孙明升,胡颖,陈旋,罗群凤,杨章旗. 外源调节物质对干旱胁迫下格木幼苗生理特性的影响[J]. 林业科学, 2020, 56(10): 165-172. |
[6] | 陶晨悦, 邵珊璐, 史文辉, 林琳, 汤祎磊, 应叶青. 氮沉降对干旱胁迫下毛竹实生苗生物量和保护酶活性的影响[J]. 林业科学, 2019, 55(9): 31-40. |
[7] | 王怡霖, 王卫锋, 张芸香, 常淑君, 郭晋平. 碧玉杨叶形态结构与生理特性对干旱的响应[J]. 林业科学, 2019, 55(4): 42-50. |
[8] | 江成, 周厚君, 赵岩秋, 何辉, 楚立威, 宋学勤, 卢孟柱. 干旱和高盐胁迫下钙离子依赖核酸酶基因CDD对银腺杨84K生长发育的影响[J]. 林业科学, 2019, 55(2): 33-40. |
[9] | 张江涛, 杨淑红, 朱镝, 朱延林, 刘友全. 美洲黑杨2025及其2个芽变品种苗对持续干旱的生理响应及抗旱性评价[J]. 林业科学, 2018, 54(6): 33-43. |
[10] | 陈志成, 刘畅, 刘晓静, 万贤崇. 光强和树体大小对锐齿栎树木水、碳平衡的影响[J]. 林业科学, 2017, 53(9): 18-25. |
[11] | 杜明凤, 丁贵杰, 赵熙州. 不同家系马尾松对持续干旱的响应及抗旱性[J]. 林业科学, 2017, 53(6): 21-29. |
[12] | 黄绢, 陈存, 张伟溪, 丁昌俊, 苏晓华, 黄秦军. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5): 8-15. |
[13] | 全文选, 丁贵杰. 干旱胁迫下马尾松幼苗针叶挥发性物质与内源激素的变化[J]. 林业科学, 2017, 53(4): 49-55. |
[14] | 罗青红, 宁虎森, 何苗, 吉小敏, 雷春英. 5种沙地灌木对干旱胁迫的生理生态响应[J]. 林业科学, 2017, 53(11): 29-42. |
[15] | 储文渊, 王玉娇, 朱东悦, 陈竹, 严涵薇, 项艳. 盐和干旱胁迫下杨树新内参基因的筛选[J]. 林业科学, 2017, 53(10): 70-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||