李伟,王锐,刘守新. 2010. 纳米纤维素的制备. 化学进展, 22(10):2060-2070. (Li W, Wang R, Liu S X. 2010. Preparation of nanocrystalline cellulose. Progress in Chemistry, 22(10):2060-2070.[in Chinese]) 卿彦,蔡智勇,吴义强,等. 2012. 纤维素纳米纤丝研究进展. 林业科学,48(7):145-152. (Qing Y, Cai Z Y, Wu Y Q, et al. 2012. Study progress on cellulose nanofibril. Scientia Silvae Sinicae, 48(7):145-152.[in Chinese]) 王林格,黄勇. 2004. 纤维素衍生物胆甾相液晶体系的结构及光学性能. 液晶与显示,19(1):10-13. (Wang L G, Huang Y. 2004. Structure and optical property of cellulose derivatives cholesteric liquid crystalline system. Chinese Journal of Liquid Crystals and Displays, 19(1):10-13.[in Chinese]) 杨洁,叶代勇. 2012. 纳米纤维素晶须表面接枝及其液晶性能研究进展. 化工进展,31(9):1990-1997. (Yang J, Ye D Y. 2012. Progress of surface grafted nano cellulose whiskers and liquid crystals. Chemical Industry and Engineering Progress, 31(9):1990-1997.[in Chinese]) 曾加,黄勇. 2000. 纤维素及其衍生物的胆甾型液晶结构. 高分子材料科学与工程,16(6):13-17. (Zeng J, Huang Y. 2000. Cholesteric structure of cellulose derivative liquid crystals. Polymer Materials Science and Engineering, 16(6):13-17.[in Chinese]) Angles M N, Dufresne A. 2000. Plasticized starch/tunicin whiskers nanocomposites. 1.Structural analysis. Macromolecules, 33(22):8344-8353. Araki J, Wada M, Kuga S, et al. 1998. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids and Surfaces A, 142(1):75-82. Araki J, Wada M, Kuga S, et al. 1999. Influence of surface charge on viscositybehavior of cellulose microcrystal suspension. Journal of Wood Science, 45(3):258-261. Araki J, Kuga S. 2001. Effect of trace electrolyte on liquid crystal type of cellulosemicrocrystals. Langmuir, 17(15):4493-4496. Azzam F, Siqueira E, Fort S, et al. 2016. Tunable aggregation and gelation of thermoresponsive suspensions of polymer-grafted cellulose nanocrystals. Biomacromolecules, 17(6):2112-2119. Beck-Candanedo S, Roman M, Gray D. 2005. Effect of reaction conditions on theproperties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6(2):1048-1054. Beck S, Bouchard J, Berry R. 2010. Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules, 12(1):167-172. Castro-Guerrero C F, Gray D G. 2014. Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose, 21(4):2567-2577. Chen Q, Liu P, Sheng C, et al. 2014a. Tunable self-assembly structure of graphene oxide/cellulose nanocrystal hybrid films fabricated by vacuum filtration technique. RSC Advances, 4(74):39301-39304. Chen Q, Liu P, Nan F, et al. 2014b. Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. Biomacromolecules, 15(11):4343-4350. Cheung C C Y, Giese M, Kelly J A, et al. 2013. Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvents. ACS Macro Letters, 2(11):1016-1020. De Souza Lima M M, Borsali R. 2004. Rodlike cellulose microcrystals:structure, properties, and applications. Macromolecular Rapid Communications, 25(7):771-787. Dong X M, Kimura T, Revol J F, et al. 1996. Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir, 12(8):2076-2082. Dong X M, Gray D G. 1997a. Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir, 13(8):2404-2409. Dong X M, Gray D G. 1997b. Induced circular dichroism of isotropic and magnetically-oriented chiral nematic suspensions of cellulose crystallites. Langmuir, 13(11):3029-3034. Dumanli A G, Kamita G, Landman J, et al. 2014. Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Advanced Optical Materials, 2(7):646-650. Edgar C D, Gray D G. 2001. Induced circular dichroism of chiral nematic cellulose films. Cellulose, 8(1):5-12. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J L, et al. 2007. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 9(1):57-65. Furumi S, Yokoyama S, Otomo A, et al. 2003. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Applied Physics Letters, 82(1):16-18. Giese M, Blusch L K, Khan M K, et al. 2015. Functional materials from cellulose-derived liquid-crystal templates. Angewandte Chemie International Edition, 54(10):2888-2910. Gray D G. 2014. Isolation and handedness of helical coiled cellulosic thickenings from plant petiole tracheary elements.Cellulose,21(5):3181-3191. Heux L, Chauve G, Bonini C. 2000. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir, 16(21):8210-8212. Hirai A, Inui O, Horii F, et al. 2008. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir, 25(1):497-502. Kelly J A, Giese M, Shopsowitz K E, et al. 2014. The development of chiral nematic mesoporous materials.Accounts of Chemical Research, 47(4):1088-1096. Khan M K, Bsoul A, Walus K, et al. 2015. Photonic patterns printed in chiral nematic mesoporous resins. Angewandte Chemie International Edition, 127(14):4378-4382. Kimura F, Kimura T, Tamura M, et al. 2005. Magnetic alignmentof the chiral nematic phase of a cellulose microfibril suspension. Langmuir, 21(5):2034-2037. Liu D, Wang S, Ma Z, et al. 2014. Structure-color mechanism of iridescent cellulose nanocrystal films. RSC Advances, 4(74):39322-39331. Liu B, Cao Y, Huang Z, et al. 2015. Silica biomineralization via the self-assembly of helical biomolecules. Advanced Materials, 27(3):479-497. Majoinen J, Kontturi E, Ikkala O, et al. 2012. SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose, 19(5):1599-1605. Marchessault R H, Morehead F F, Walter N M. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature, 184(4686):632-633. Mo Z, Zhao Z, Chen H, et al. 2009. Heterogeneous preparation of cellulose-polyaniline conductive composites with cellulose activated by acids and its electrical properties. Carbohydrate Polymers, 75(4):660-664. Moon R J, Martini A, Nairn J, et al. 2011. Cellulose nanomaterials review:structure, properties and nanocomposites. Chemical Society Reviews, 40(7):3941-3994. Mu X, Gray D G. 2014. Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir, 30(31):9256-9260. Pan J, Hamad W, Straus S K. 2010. Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules, 43(8):3851-3858. Revol J F, Bradford H, Giasson J, et al. 1992. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 14(3):170-172. Saha A, Tanaka Y, Han Y, et al. 2012. Irreversible visual sensing of humidity using a cholesteric liquid crystal. Chemical Communications, 48(38):4579-4581. Schlesinger M, Giese M, Blusch L K, et al. 2015. Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose. Chemical Communications, 51(3):530-533. Sena C, Godinho M H, Oliveira C L P, et al. 2011. Liquid crystalline cellulosic elastomers:freestanding anisotropic films under stretching. Cellulose, 18(5):1151-1163. Shin Y, Exarhos G J. 2007. Template synthesis of porous titania using cellulose nanocrystals. Materials Letters, 61(11):2594-2597. Shopsowitz K E, Qi H, Hamad W Y, et al. 2010. Free-standing mesoporous silica films with tunable chiral nematic structures. Nature, 468(7322):422. Shopsowitz K E, Hamad W Y, MacLachlan M J. 2011. Chiral nematic mesoporous carbon derived from nanocrystalline cellulose. Angewandte Chemie International Edition, 50(46):10991-10995. Thomas A, Antonietti M. 2003. Silica nanocasting of simple cellulose derivatives:towards chiral pore systems with long-range order and chiral optical coatings. Advanced Functional Materials, 13(10):763-766. Tian C, Yi J, Wu Y, et al. 2016. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.Carbohydrate Polymers,136:485-492. Wang B, Walther A. 2015. Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano, 9(11):10637-10646. Werbowyj R S, Gray D G. 1976. Liquid crystalline structure in aqueous hydroxypropyl cellulose solutions. Molecular Crystals and Liquid Crystals, 34(4):97-103. Yang J, Ye D Y. 2012. Liquid crystal of nanocellulose whiskers grafted with acrylamide. Chinese Chemical Letters, 23(3):367-370. Yi J, Xu Q, Zhang X, et al. 2009. Temperature-induced chiral nematic phase changes of suspensions of poly (N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose, 16(6):989-997. Zhang D, Zhang L, Wang B, et al. 2013. Nanocomposites of polyaniline and cellulose nanocrystals prepared in lyotropic chiral nematic liquid crystals. Journal of Materials, 2013(614507):1-6. Zhu H, Luo W, Ciesielski P N, et al. 2016. Wood-derived materials for green electronics, biological devices, and energy applications. Chemical Reviews, 116(16):9305-9374. |