欢迎访问林业科学,今天是

林业科学 ›› 2018, Vol. 54 ›› Issue (3): 134-143.doi: 10.11707/j.1001-7488.20180314

• 综述 • 上一篇    下一篇

纳米纤维素储能研究进展

卿彦1, 易佳楠1, 吴义强1, 吴清林1,2, 张振1, 李蕾1   

  1. 1. 中南林业科技大学 长沙 410004;
    2. 美国路易斯安拉州立大学 巴吞鲁日 70803
  • 收稿日期:2016-07-07 修回日期:2016-08-16 出版日期:2018-03-25 发布日期:2018-04-13
  • 基金资助:
    国家自然科学基金项目(31530009,31500476);"十三五"国家重大研发计划课题(2017YFD0600804);湖南省科技创新平台与人才计划项目(2016RS2010,2016TP1013)。

Advances in Application of Biomass Nanocellulose to Green-Energy Storage

Qing Yan1, Yi Jianan1, Wu Yiqiang1, Wu Qinglin1,2, Zhang Zhen1, Li Lei1   

  1. 1. Central South University of Forestry and Technology Changsha 410004;
    2. Louisiana State University Baton Rouge 70803
  • Received:2016-07-07 Revised:2016-08-16 Online:2018-03-25 Published:2018-04-13

摘要: 纳米纤维素是一种来源于植(动)物或微生物的天然绿色纳米材料,拥有高表面化学活性、独特的网络结构、优异的力学强度和高比表面积等优良特性。通过层层自组装、原位化学聚合和电化学沉积等方式,纳米纤维素可与金属氧化物、导电聚合物和二维纳米材料等多种纳米粒子高效复合,形成不同微观尺寸和结构特性的纳米纤维素基多孔膜材料和导电复合材料,在金属离子电池、超级电容器等储能器件用隔膜和电极材料领域具有广阔的应用前景。根据材料来源、制备方法和纤维形态的差异,纳米纤维素可分为纤维素纳米晶体、纤维素纳米纤丝、细菌合成纳米纤维和静电纺丝纳米纤维4大类,目前用于储能材料的主要是前3类。这些纳米纤维素常与水混合成胶体状态,失水后借助氢键自组装(织)形成力学性能和热稳定性优异的薄膜,在电解质溶液中具有良好的保湿能力,易于离子和电子传输,是储能器件隔膜材料的理想选择。纳米纤维素丰富的活性基团、独特的网络结构和易于成膜的特性,可作为骨架材料与其他导电活性成分(主要包括碳纳米材料、金属氧化物和导电聚合物)复合制备储能用电极材料。纳米纤维素也可以直接炭化用于电极材料,其储能性能与石墨化程度密切相关,常通过掺杂改性、多元复合等方式提高储能效率和性能。现阶段纳米纤维素基电极材料有主要碳纤维材料、二维纳米材料、导电高分子材料和多元复合材料,尽管具有无可比拟的性能优势和乐观的应用前景,但纳米纤维素与电极活性材料之间的复合方式、界面相容性以及微观形貌调控等研究尚处于起步阶段,如何最大限度发挥纳米纤维素的尺寸效应和网络结构,构建具有更加精细的纳米体系及高转化效率的储能器件是下一步需要攻克的主要难题。本文在简要介绍纳米纤维素分类和性能的基础上,详细阐述其在储能器件隔膜材料和新型电极材料领域的研究现状,并进一步对纳米纤维素在该领域的发展趋势进行展望。

关键词: 纳米纤维素, 电极材料, 隔膜材料, 储能器件

Abstract: Nanocellulose is a green nanomaterial obtained from natural plants, several marine animals and exceptional microbes. As the results of its unique network structure, outstanding mechanical properties and high specific surface area, nanocellulose can be effectively compounded via layer-by-layer self-assembling, in-situ chemical polymerization and electrochemical deposition with various nanoparticles such as metal oxides, conductive polymers, and two-dimension nanomaterials,to form different nanocellulose-based porous film material and electroconductive composites. These nanocomposites have great application prospects in the separator and electrode materials for mental ion battery and supercapacitor. Based on the differences in source materials, preparation methods, and fiber morphology, nanocellulose is divideed into cellulose nanocrystal, cellulose nanofibril, bacterial nanocelluloe, and electrospun cellulose, and the former three are widely used for energy storage materials. Naturally, nanocellulose is frequently mixed with water and maintains in the stable colloidal state. After the loss of water, the nanocellulose mixture is able to form self-assembled nanocellulose film with outstanding mechanical properties and thermal stability. The film exhibits good ability of moisturizing in electrolyte solution and smoothness for free ion and electron transfer as a promising choice for separator in green energy storage. Due to the advantages of sufficient active groups, unique network and easiness to form film, nanocellulose, incorporating with other conductive active ingredients such as carbon nanomaterials, metal oxide, and conductive polymers, plays significant role of skeleton material in the preparation of electrode for energy storage. The nanocellulose can also be directly carbonized for electrode materials, and its electrochemical performance is closely related to the degree of graphitization. To improve the electrochemical performance, the carbonized nanocellulose is often further treated by N-and C-doping. Currently, the major nanocellulose based electrode materials include nano-cellulose carbon fiber materials, two-dimension nanomaterials, conductive polymer materials and multi-component materials. Although nanocelluse poses incomparable merits and perspective future in the application to green energy storage, it still faces huge challenges in the incorporation pattern between nanocellulose and electrode active material, poor interfacial compatibility and microstructure regulation. It is suggested that the future work would focus on the tough problems of maximizing the size effect in nanometer and instinctive network structure, building more elaborate nano-system and designing energy storage device with higher conversion efficiency. This paper briefly introduces varieties and properties of nanocellulose, highlights its present application status in separator materials and novel electrode materials, and predicts its future development.

Key words: nanocellulose, electrode materials, separator materials, energy storage device

中图分类号: