|
符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型. 林业科学研究, 2015, 28 (1): 23- 31.
|
|
Fu L Y, Tang S Z, Zhang H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica. Forest Research, 2015, 28 (1): 23- 31.
|
|
高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响. 南京林业大学学报(自然科学版), 2023, 47 (6): 85- 94.
|
|
Gao X Y, Dong L H, Hao Y S. Effects of thinning on Larix olgensis plantation stem form based on TLS. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47 (6): 85- 94.
|
|
刘金鹏, 张怀清, 刘 闽, 等. 基于地面激光扫描数据的单木分枝结构参数自动提取. 林业科学, 2016, 52 (3): 121- 128.
|
|
Liu J P, Zhang H Q, Liu M, et al. Automatic extraction of individual tree branch structure parameters from terrestrial laser scanning data. Scientia Silvae Sinicae, 2016, 52 (3): 121- 128.
|
|
刘鲁霞, 庞 勇, 李增元. 基于地基激光雷达的亚热带森林单木胸径与树高提取. 林业科学, 2016, 52 (2): 26- 37.
|
|
Liu L X, Pang Y, Li Z Y. Individual tree DBH and height estimation using terrestrial laser scanning (TLS) in a subtropical forest. Scientia Silvae Sinicae, 2016, 52 (2): 26- 37.
|
|
梅光义, 孙玉军. 国内外削度方程研究进展. 世界林业研究, 2015, 28 (4): 44- 49.
|
|
Mei G Y, Sun Y J. Research progress in stem taper equation. World Forestry Research, 2015, 28 (4): 44- 49.
|
|
聂璐毅, 董利虎, 李凤日, 等. 基于两水平非线性混合效应模型的长白落叶松削度方程构建. 南京林业大学学报(自然科学版), 2022, 46 (3): 194- 202.
|
|
Nie L Y, Dong L H, Li F R, et al. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46 (3): 194- 202.
|
|
潘 婷, 雷 云, 申玲芝, 等. 针阔混交林生态系统特征及生态效益分析. 山地农业生物学报, 2021, 40 (5): 40- 47.
|
|
Pan T, Lei Y, Shen L Z, et al. Analysis of ecosystem characteristics and ecological benefits of coniferous and broad-leaved mixed forest. Journal of Mountain Agriculture and Biology, 2021, 40 (5): 40- 47.
|
|
尤 磊, 哈登龙, 谢明坤, 等. 2019. 基于三维激光点云与断面轮廓曲线的树干材积计算. 林业科学, 55(11): 63−72.
|
|
You L, Ha D L, Xie M K, et al. 2019. Stem volume calculation based on stem section profile curve and three dimension laser point cloud. Scientia Silvae Sinicae, 55(11): 63−72. [in Chinese]
|
|
易 静, 马开森, 向建平, 等. 点云切片结合聚类算法的TLS单木探测方法研究. 南京林业大学学报, 2024, 48 (4): 113- 122.
|
|
Yi J, Ma K S, Xiang J P, et al. Research on TLS single tree detection method based on point cloud slicing combined with clustering algorithm. Journal of Nanjing Forestry University, 2024, 48 (4): 113- 122.
|
|
Bornand A, Rehush N, Morsdorf F, et al. Individual tree volume estimation with terrestrial laser scanning: evaluating reconstructive and allometric approaches. Agricultural and Forest Meteorology, 2023, 341, 109654.
doi: 10.1016/j.agrformet.2023.109654
|
|
Cabo C, Ordóñez C, López-Sánchez C A, et al. Automatic dendrometry: Tree detection, tree height and diameter estimation using terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2018, 69, 164- 174.
doi: 10.1016/j.jag.2018.01.011
|
|
Choi S, Kim T, Yu W. Performance evaluation of RANSAC family. Journal of Computer Vision, 2009, 24 (3): 271- 300.
|
|
Kozak A. My last words on taper equations. The Forestry Chronicle, 2004, 80 (4): 507- 515.
|
|
Liu G, Wang J, Dong P, et al. Estimating individual tree height and diameter at breast height (DBH) from terrestrial laser scanning (TLS) data at plot level. Forests, 2018, 9 (7): 398.
doi: 10.3390/f9070398
|
|
Liang X L, Hyyppä J, Kaartinen H, et al. International benchmarking of terrestrial laser scanning approaches for forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144, 137- 179.
doi: 10.1016/j.isprsjprs.2018.06.021
|
|
Luoma V, Saarinen N, Wulder M A, et al. Assessing precision in conventional field measurements of individual tree attributes. Forests, 2017, 8 (2): 38.
doi: 10.3390/f8020038
|
|
Liang X L, Litkey P, Hyyppa J, et al. Automatic stem mapping using single-scan terrestrial laser scanning. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50 (2): 661- 670.
doi: 10.1109/TGRS.2011.2161613
|
|
Liang X L, Kankare V, Yu X W, et al. Automated stem curve measurement using terrestrial laser scanning. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (3): 1739- 1748.
doi: 10.1109/TGRS.2013.2253783
|
|
Olofsson K, Holmgren J, Olsson H. Tree stem and height measurements using terrestrial laser scanning and the RANSAC algorithm. Remote Sensing, 2014, 6 (5): 4323- 4344.
doi: 10.3390/rs6054323
|
|
Pitkänen T P, Raumonen P, Liang X L, et al. Improving TLS-based stem volume estimates by field measurements. Computers and Electronics in Agriculture, 2021, 180, 105882.
doi: 10.1016/j.compag.2020.105882
|
|
Pyörälä J, Liang X L, Vastaranta M, et al. Quantitative assessment of Scots pine (Pinus sylvestris L. ) whorl structure in a forest environment using terrestrial laser scanning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11 (10): 3598- 3607.
doi: 10.1109/JSTARS.2018.2819598
|
|
Rahman MA, Bakar MA, Razak K, et al. Non-Destructive, laser-based individual tree aboveground biomass estimation in a tropical rainforest. Forests, 2017, 8 (3): 86.
doi: 10.3390/f8030086
|
|
Srinivasan S, Popescu S C, Eriksson M, et al. Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sensing, 2015, 7 (2): 1877- 1896.
doi: 10.3390/rs70201877
|
|
Stovall A E L, MacFarlane D W, Crawford D, et al. Comparing mobile and terrestrial laser scanning for measuring and modelling tree stem taper. Forestry: An International Journal of Forest Research, 2023, 96 (5): 705- 717.
doi: 10.1093/forestry/cpad012
|
|
Stovall A E L, Vorster A G, Anderson R S, et al. Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR. Remote Sensing of Environment, 2017, 200, 31- 42.
doi: 10.1016/j.rse.2017.08.013
|
|
Wang Y S, Lehtomäki M, Liang X L, et al. Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147, 132- 145.
doi: 10.1016/j.isprsjprs.2018.11.008
|
|
Wilkes P, Lau A, Disney M, et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sensing of Environment, 2017, 196, 140- 153.
doi: 10.1016/j.rse.2017.04.030
|
|
Yrttimaa T, Luoma V, Saarinen N, et al. Structural changes in boreal forests can be quantified using terrestrial laser scanning. Remote Sensing, 2020a, 12 (17): 2672.
doi: 10.3390/rs12172672
|
|
Yrttimaa T, Saarinen N, Kankare V, et al. 2020b. Performance of terrestrial laser scanning to characterize managed Scots pine (Pinus sylvestris L.) stands is dependent on forest structural variation. ISPRS Journal of Photogrammetry and Remote Sensing, 168: 277−287.
|
|
Yrttimaa T, Saarinen N, Kankare V, et al. Investigating the feasibility of multi-scan terrestrial laser scanning to characterize tree communities in southern boreal forests. Remote Sensing, 2019, 11 (12): 1423.
doi: 10.3390/rs11121423
|