|
李 荣, 党 维, 蔡 靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报, 2016, 40 (3): 255- 263.
doi: 10.17521/cjpe.2015.0260
|
|
Li R, Dang W, Cai J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. Chinese Journal of Plant Ecology, 2016, 40 (3): 255- 263.
doi: 10.17521/cjpe.2015.0260
|
|
李 荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080
|
|
Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080
|
|
李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展. 植物生态学报, 2019, 43 (8): 635- 647.
doi: 10.17521/cjpe.2019.0076
|
|
Li Z M, Wang C K. Research progress on responses of xylem of woody plants to freeze-thaw embolism. Chinese Journal of Plant Ecology, 2019, 43 (8): 635- 647.
doi: 10.17521/cjpe.2019.0076
|
|
张海昕, 李 姗, 张硕新, 等. 4个杨树子代木质部导管结构与栓塞脆弱性的关系. 林业科学, 2013, 49 (5): 54- 61.
|
|
Zhang H X, Li S, Zhang S X, et al. Relationships between xylem vessel structure and embolism vulnerability in four Populus clones. Scientia Silvae Sinicae, 2013, 49 (5): 54- 61.
|
|
赵 涵, 黄 瑾, 张友静, 等. 开口导管比例对栓塞脆弱性曲线类型的影响. 林业科学, 2020, 56 (5): 50- 59.
|
|
Zhao H, Huang J, Zhang Y J, et al. Influence of open vessel proportion on the types of embolism vulnerability curves. Scientia Silvae Sinicae, 2020, 56 (5): 50- 59.
|
|
Améglio T, Bodet C, Lacointe A, et al. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiology, 2002, 22 (17): 1211- 1220.
doi: 10.1093/treephys/22.17.1211
|
|
Charrier G, Charra-Vaskou K, Kasuga J, et al. Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiology, 2014, 164 (2): 992- 998.
doi: 10.1104/pp.113.228403
|
|
Choat B, Medek D E, Stuart S A, et al. Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytologist, 2011, 191 (4): 996- 1005.
doi: 10.1111/j.1469-8137.2011.03772.x
|
|
Christensen-Dalsgaard K K, Tyree M T. 2013. Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker? Oecologia, 173(3): 665–674.
|
|
Christensen-Dalsgaard K K, Tyree M T. 2014. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ. Plant, Cell & Environment, 37(5): 1074–1085.
|
|
Cochard H, Damour G, Bodet C, et al. Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 2005, 124 (4): 410- 418.
doi: 10.1111/j.1399-3054.2005.00526.x
|
|
Dai Y X, Wang L, Wan X C. Frost fatigue and its spring recovery of xylem conduits in ring-porous, diffuse-porous, and coniferous species in situ. Plant Physiology and Biochemistry, 2020, 146, 177- 186.
doi: 10.1016/j.plaphy.2019.11.014
|
|
Davis S D, Sperry J S, Hacke U G. The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany, 1999, 86 (10): 1367- 1372.
doi: 10.2307/2656919
|
|
Domec J C, Gartner B L. Cavitation and water storage capacity in Bole xylem segments of mature and young Douglas-fir trees. Trees, 2001, 15 (4): 204- 214.
doi: 10.1007/s004680100095
|
|
Feild T S, Brodribb T. Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia, 2001, 127 (3): 314- 320.
doi: 10.1007/s004420000603
|
|
Feng F, Ding F, Tyree M T. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements. Plant Physiology, 2015, 168 (1): 144- 155.
doi: 10.1104/pp.114.256271
|
|
Hacke U G, Sperry J S. 2001a. Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4(2): 97–115.
|
|
Hacke U G, Sperry J S, Pockman W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001b, 126 (4): 457- 461.
doi: 10.1007/s004420100628
|
|
Hacke U G, Stiller V, Sperry J S, et al. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiology, 2001c, 125 (2): 779- 786.
doi: 10.1104/pp.125.2.779
|
|
Hacke UG, Spicer R, Schreiber SG, et al. An ecophysiological and developmental perspectiveon variationinvessel diameter. Plant. Cell & Environment, 2017, 40 (6): 831- 845.
|
|
Hao G Y, Wheeler J K, Holbrook N M, et al. Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry. Journal of Experimental Botany, 2013, 64 (8): 2321- 2332.
doi: 10.1093/jxb/ert090
|
|
Lens F, Sperry J S, Christman M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 2011, 190 (3): 709- 723.
doi: 10.1111/j.1469-8137.2010.03518.x
|
|
Levionnois S, Jansen S, Wandji R T, et al. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees. New Phytologist, 2021, 229 (3): 1453- 1466.
doi: 10.1111/nph.16942
|
|
Li Z M, Luo D D, Ibrahim M M, et al. Adaptive strategies to freeze-thaw cycles in branch hydraulics of tree species coexisting in a temperate forest. Plant Physiology and Biochemistry, 2024, 206, 108223.
doi: 10.1016/j.plaphy.2023.108223
|
|
Mayr S, Améglio T. 2016. Freezing stress in tree xylem. Progress in Botany. Cham: Springer International Publishing: 381–414.
|
|
Niu C Y, Meinzer F C, Hao G Y. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature. Functional Ecology, 2017, 31 (8): 1550- 1560.
doi: 10.1111/1365-2435.12868
|
|
Olson M E, Soriano D, Rosell J A, et al. Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (29): 7551- 7556.
|
|
Pittermann J, Sperry J. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiology, 2003, 23 (13): 907- 914.
doi: 10.1093/treephys/23.13.907
|
|
Pittermann J, Sperry J S. Analysis of freeze-thaw embolism in conifers. the interaction between cavitation pressure and tracheid size. Plant Physiology, 2006, 140 (1): 374- 382.
doi: 10.1104/pp.105.067900
|
|
Sperry J S, Donnelly J R, Tyree M T. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11(1): 35–40.
|
|
Sperry J S, Sullivan J E M. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology, 1992, 100 (2): 605- 613.
doi: 10.1104/pp.100.2.605
|
|
Westhoff M, Schneider H, Zimmermann D, et al. The mechanisms of refilling of xylem conduits and bleeding of tall birch during spring. Plant Biology, 2008, 10 (5): 604- 623.
doi: 10.1111/j.1438-8677.2008.00062.x
|
|
Yin X H, Hao G Y, Sterck F. A trade-off between growth and hydraulic resilience against freezing leads to divergent adaptations among temperate tree species. Functional Ecology, 2022, 36 (3): 739- 750.
doi: 10.1111/1365-2435.13991
|
|
Yin X H, Sterck F, Hao G Y. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation. New Phytologist, 2018, 219 (2): 530- 541.
doi: 10.1111/nph.15170
|
|
Zhang W, Feng F, Tyree M T. 2018. Seasonality of cavitation and frost fatigue in Acer mono Maxim. Plant, Cell & Environment, 41(6): 1278–1286.
|
|
Zanne A E, Pearse W D, Cornwell W K, et al. Functional biogeography of angiosperms: life at the extremes. New Phytologist, 2018, 218 (4): 1697- 1709.
doi: 10.1111/nph.15114
|