 
		林业科学 ›› 2022, Vol. 58 ›› Issue (8): 173-181.doi: 10.11707/j.1001-7488.20220818
王正,周宇昊,沈肇雨,何宇航
收稿日期:2021-09-17
									
				
									
				
									
				
											出版日期:2022-08-25
									
				
											发布日期:2022-12-19
									
			基金资助:Zheng Wang,Yuhao Zhou,Zhaoyu Shen,Yuhang He
Received:2021-09-17
									
				
									
				
									
				
											Online:2022-08-25
									
				
											Published:2022-12-19
									
			摘要:
目的: 基于试验探究Timoshenko自由梁迭代法计算木材弹性模量和剪切模量的适用性,重点考虑木材弹性模量和剪切模量的测试精度,寻求梁试件合适的长厚比。方法: 通过山毛榉、云杉-松-冷杉(SPF)和单板层积材(LVL)试件截短试验,动态测试不同长厚比试件的频谱,从频谱图上读出自由梁的第一阶和第二阶弯曲频率;应用迭代程序计算木材和木质复合材料的弹性模量和剪切模量;采用自由杆件扭转振动法和自由板扭转振型法验证自由梁迭代法计算剪切模量的有效性。结果: 存在一个与树种有关的试件长厚比下限值,当试件长厚比小于该下限值时, 自由梁迭代法不能计算出正常的弹性模量和剪切模量或根本计算不出弹性模型和剪切模量;自由梁迭代法计算出的弹性模量高于Euler自由梁法计算出的弹性模量,其程度与试件长厚比有关,仅当试件长厚比大于24时其偏高值才在4%以内;自由梁迭代法计算出的剪切模量与矩形截面因子k取值有关,当k取0.833和0.913时,分别高于自由杆件扭转振动法(自由板扭转振型法)剪切模量测试值12.2%和2.3%(19.9%和9.3%)。结论: 为保证自由梁迭代法测试精度,推荐采用长厚比20~24的梁试件动态测试其第一阶和第二阶弯曲频率,并用矩形截面因子取0.913进行迭代计算木材的弹性模量和剪切模量。
中图分类号:
王正,周宇昊,沈肇雨,何宇航. Timoshenko自由梁迭代法计算木材弹性模量和剪切模量的适用性[J]. 林业科学, 2022, 58(8): 173-181.
Zheng Wang,Yuhao Zhou,Zhaoyu Shen,Yuhang He. Applicability of Timoshenko Beam Iterative Method to Calculate Wood Elastic Modulus and Shear Modulus[J]. Scientia Silvae Sinicae, 2022, 58(8): 173-181.
 
												
												表1
梁试件基本参数"
| 试件 Specimen | 长 Length/mm | 宽 Width/mm | 厚 Thickness/mm | 数量 Quantity | 密度 Density/(kg·m-3) | 备注 Remark | 
| 山毛榉 Fagus sylvatica | 600 | 28 | 24 | 8 | 708 | 径向 Radial | 
| 600 | 24 | 28 | 8 | 708 | 弦向 Tangential | |
| SPF | 578 | 26 | 24 | 6 | 458 | 径向 Radial | 
| 578 | 24 | 26 | 6 | 458 | 弦向 Tangential | |
| LVL | 1 002 | 46 | 46 | 4 | 573 | 顺纹 Grain | 
| 960 | 30 | 30 | 4 | 591 | 顺纹 Grain | |
| 山毛榉 Fagus sylvatica | 768 | 24 | 24 | 4 | 720 | 弦向、径向 Tangential,radial | 
| SPF | 768 | 24 | 24 | 2 | 481 | 弦向、径向 Tangential,radial | 
| LVL | 760 | 45 | 45 | 4 | 591 | 横纹 Horizontal | 
| 西加云杉 Picea sitchenrsis | 300 | 30 | 20 | 3 | 369 | 横向 Transverse | 
 
												
												表3
SPF、山毛榉和LVL采用自由梁迭代法计算的E/E0随梁长厚比(l/h)的变化"
| 试件 Specimen | 梁长厚比 Length-to-thickness ratio of beam(l/h) | ||||||||
| 32 | 28 | 24 | 20 | 16 | 14 | 12 | 10 | 8 | |
| SPF | 1.030 | 1.029 | 1.030 | 1.041 | 1.080 | 1.108 | 1.139 | 1.225 | 2.758 | 
| 山毛榉 Fagus sylvatica | 1.024 | 1.029 | 1.039 | 1.054 | 1.086 | 1.679 | 2.554 | - | - | 
| LVL | 1.020 | 1.028 | 1.037 | 1.050 | 1.079 | 1.103 | 1.140 | 2.969 | - | 
 
												
												表4
山毛榉、SPF和LVL采用自由梁迭代法计算的弹性模量和剪切模量①"
| 试件 Specimen | 取向 Direction | 梁长厚比 Length-to-thickness ratio of beam(l/h) | 弹性模量 Elastic modulus/GPa | 剪切模量 Shear modulus/MPa | |
| k = 0.833 | k = 0.913 | ||||
| 山毛榉 Fagus sylvatica | 弦向 Tangential | 32~16 | 16.1(0.4%) | 1 114(7.1%) | 1 017 (7.1%) | 
| 径向 Radial | 32~16 | 16.4(0.7%) | 1 417(4.6%) | 1 293 (4.6%) | |
| SPF | 弦向 Tangential | 32~10 | 13.5(5.2%) | 690(9.9%) | 628(9.7%) | 
| 径向 Radial | 32~10 | 13.6(3.5%) | 778(12.0%) | 719(12.5%) | |
| LVL顺纹 LVL grain | 垂直胶层 Perpendicular to adhesive layer | 28~12 | 12.7(0.7%) | 957(9.3%) | 873(9.3%) | 
| 平行胶层 Parallel to adhesive layer | 28-12 | 12.3(1.0%) | 928(4.5%) | 847(9.3%) | |
 
												
												表5
自由杆件扭转振动法和自由板扭转振型法测试的山毛榉、SPF和LVL剪切模量"
| 试件 Specimen | 试件数 Number of specimens | 板长宽比 Aspect ratio of plate | 取向 Direction | 剪切模量 Shear modulus/MPa | |
| 自由板扭转振型法 Free plate torsional mode method | 自由杆件扭转振动法 Free member torsional vibration method | ||||
| 山毛榉 Fagus sylvatica | 4 | 3.0~6.0 | 弦向 Tangential | 932(3.9%) | 994(3.0%) | 
| SPF | 3 | 3.0~5.5 | 弦向 Tangential | 580(7.2%) | 618(5.8%) | 
| LVL | 3 | 4 | 顺纹 Grain | 790(0.1%) | 848(0.3%) | 
 
												
												表6
矩形截面因子k取值对自由梁迭代法计算结果的影响"
| 试件 Specimen | 试件编号 No. | 长 Length/mm | 宽 Width/mm | 高 Height/mm | l/h | 密度 Density/(kg·m-3) | 一弯 First-order bend/Hz | 二弯 Second-order bend/Hz | k=0.833 | k=0.913 | ||
| E/GPa | G/MPa | E/GPa | G/MPa | |||||||||
| 山毛榉径向 Fagus sylvatica, radial | 4-1 | 401 | 29.19 | 23.98 | 16.7 | 742 | 771.9 | 1 981.3 | 38.46 | 166 | 20.11 | 1 487 | 
| 山毛榉弦向 Fagus sylvatica, tangential | 4-1b | 401 | 23.98 | 29.19 | 13.8 | 742 | 887.5 | 2 131.3 | 43.21 | 183 | 19.22 | 913 | 
| 山毛榉弦向 Fagus sylvatica, tangential | 5-1b | 401 | 24.58 | 29.05 | 13.8 | 734 | 834.4 | 2 068.8 | 33.81 | 174 | 16.42 | 1 101 | 
| SPF径向 SPF, radial | 24-2 | 201 | 27.11 | 24.31 | 8.3 | 458 | 2 758.3 | 6 104.2 | 38.17 | 221 | 38.17 | 202 | 
| SPF径向 SPF, radial | 26-2 | 201 | 26.98 | 24.21 | 8.3 | 444 | 2 696.9 | 5 892.7 | 40.04 | 198 | 11.19 | 686 | 
| 程可, 王正.  基于自由板扭转振形测试剪切模量的一个新方法. 南京工业大学学报(自然科学版), 2015, 37 (5): 61- 66. doi: 10.3969/j.issn.1671-7627.2015.05.010 | |
| Cheng K ,  Wang Z .  New method for testing shear modulus based on torsional vibration shape of free plate. Journal of Nanjing Tech University (Natural Science Edition), 2015, 37 (5): 61- 66. doi: 10.3969/j.issn.1671-7627.2015.05.010 | |
| 董浩然, 谈永杰, 杨小军, 等. 木构件裂纹特征及碳纤维浆料修复评价. 森林与环境学报, 2022, 42 (4): 442- 448. | |
| Dong H R , Tan Y J , Yang X J , et al. Crack characteristics of wood members and repair evaluation of carbon fiber slurry. Journal of Forest and Environment, 2022, 42 (4): 442- 448. | |
| 胡英成. 刨花板的动态剪切弹性模量的无损检测. 东北林业大学学报, 2001, 29 (2): 18- 20. | |
| Hu Y C . Nondestructive testing of the dynamic shear modulus of elasticity for particleboard. Journal of Northeast Forestry University, 2001, 29 (2): 18- 20. | |
| 胡英成, 王逢瑚, 刘一星, 等. 利用振动法检测胶合板的抗弯弹性模量. 木材工业, 2001, 15 (2): 3- 6. | |
| Hu Y C , Wang F H , Liu Y X , et al. Study on modulus of elasticity in bending of plywood by vibration method. China Wood Industry, 2001, 15 (2): 3- 6. | |
| 刘鸿文. 材料力学.2版北京: 高等教育出版社, 1983, 287 | |
| Liu H W . Mechanics of materials.2nd editionBeijing: Higher Education Press, 1983, 287 | |
| 马功勋. 单向复合材料板弹性常数的动(静)态测定方法. 复合材料学报, 1996, 13 (2): 117- 123. | |
| Ma G X . Dynamic(static) measurement of the elastic constants in uniaxially-reinforced composite sheet. Material Compositae Sinica, 1996, 13 (2): 117- 123. | |
| 阮锡根, 余观夏. 木材物理学.北京: 中国林业出版社, 2005. | |
| Ruan X G , Yu G X . Wood physics.Beijing: China Forestry Publishing House, 2005. | |
| 邵蓓珠, 马功勋. 剪力对梁变形影响的分析. 南京化工学院学报, 1988, 10 (3): 78- 84. | |
| Shan P S , Ma G X . Analysis of effect of shear on deformation of beam. Journal of Nanjing University of Chemical Technology, 1988, 10 (3): 78- 84. | |
| 谭守侠, 周定国. 木材工业手册.北京: 中国林业出版社, 2007: 261- 306. | |
| Tan S X , Zhou D G . Handbook of wood industry.Beijing: China Forestry Publishing House, 2007: 261- 306. | |
| 王正, 李磊, 杨静, 等. 对麦秸板弹性模量和阻尼比的动、静态法的测定与研究. 林业科技, 2006, 31 (5): 48- 50. | |
| Wang Z , Li L , Yang J , et al. Measuration and study to elasticity model and damp ratio of the wheat straw board with dynamic and static testing method. Forestry Science & Technology, 2006, 31 (5): 48- 50. | |
| 王正. 两种木质复合材料弹性模量与阻尼比的动态测量. 南京林业大学学报(自然科学版), 2007, 31 (3): 147- 149. | |
| Wang Z . Dynamic measures of elasticity model and damp ratio to HDF and OSB. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31 (3): 147- 149. | |
| 王正, 饶鑫, 杨小军, 等. 轻型木结构规格材抗弯弹模的两种无损法检测与评级. 林产工业, 2013, 40 (5): 30- 33. | |
| Wang Z , Rao X , Yang X J , et al. Non-destructive testing and ratings of MOE of SPF stock lumbers by the frequency method and sound velocity method. China Forest Products Industry, 2013, 40 (5): 30- 33. | |
| 王正, 高子震, 顾玲玲, 等. 测试木材剪切模量的自由板扭转振形法. 林业科学, 2014, 50 (11): 122- 128. | |
| Wang Z , Gao Z Z , Gu L L , et al. Torsional vibration shape method of free plate for testing shear modulus of lumber. Scientia Silvae Sinicae, 2014, 50 (11): 122- 128. | |
| 周海宾, 任海青, 费本华, 等. 木质复合板弯曲、剪切弹性模量动态测试. 建筑材料学报, 2007a, 10 (5): 561- 565. | |
| Zhou H B , Ren H Q , Fei B H , et al. Dynamical test on flexural and shear modulus of composite wood panels. Journal of Building Materials, 2007a, 10 (5): 561- 565. | |
| 周海宾, 任海青, 殷亚芳, 等. 横向振动评估木结构建筑用规格材弹性性质. 建筑材料学报, 2007b, 10 (3): 271- 275. | |
| Zhou H B , Ren H Q , Yin Y F , et al. Evaluating static elastic properties of wood structure building dimension lumber usingtransverse vibration. Journal of Building Materials, 2007b, 10 (3): 271- 275. | |
| 社团法人日本コンクリート工学协会(JCI). 日本工业规格JIS A1127-2001《共鸣振动によるコンクリートの动弹性系数、动せん断弹性系数及び动ポアソソ比试验方法》. 2001. | |
| Chui Y H , Smith I . Influence of rotatory ineria, shear deformation and support condition on natural frequencies of wooden beams. Wood Science and Technology, 1990, 24, 233- 245. | |
| Chui Y H . Simultaneous evaluation of bending and shear moduli of wood and the influence of knots on these parameters. Wood Science and Technology, 1991, 25, 125- 134. | |
| Ilic J . Dynamic MOE of 55 species using small wood beams. Holz als Roh-und Werkstoff, 2003, 61 (3): 167- 172. | |
| Ross R J, Pellerin R F. 1994. Nondestructive testing for assessing wood members in structures: a review. USDA Forest Service Forest Products Laboratory, General Tech. Rep. FPL-GTR-70. | |
| Timoshenko S . Mechanical vibrational science. Mechanical Industry Press, 1965: 316- 333. | |
| Turk C, Hunt J F, Marr D J. 2008. Cantilever-beam dynamic modulus for wood composite products. Part 1, apparatus. Research Note FPL-RN-0308, Madison, WI: U. S. Department of Agriculture, Forest Service, Forest Products Laboratory, 5. | |
| Wang Z , Li L , Gong M . Dynamic modulus of elasticity and damping ratio of wood-based composites using a cantileverbeam vibration technique. Construction & Building Materials, 2012, 28 (1): 831- 834. | |
| Wang Z , Wang Y L , Cao Y , et al. Measurement of shear modulus of materials based on the torsional mode of cantilever plate. Construction and Building Materials, 2016a., 124, 1059- 1071. | |
| Wang Z , Wang G G , Wang Y L , et al. Torsional vibration method for free board determining the shear modulus of wood. Journal of Forestry Engineering, 2016b, 1 (4): 10- 17. | |
| Wang Z , Xie W B , Wang Z H , et al. Strain method for synchronous dynamic measurement of elastic, shear modulus and Poisson's ratio of wood and wood composites. Construction & Building Materials, 2018, 182, 608- 617. | |
| Wang Z , Wang Y L , Cao Y , et al. Measurements of the shear modulus of materials by the free-plate torsional mode shape method. Journal of Testing and Evaluation, 2019a, 47 (2): 1163- 1181. | |
| Wang Z , Wang Y L , Cao Y , et al. Measurements of the shear modulus of materials by the free-plate torsional mode shape method. Journal of Testing and Evaluation, 2019b, 47 (2): 1163- 1181. | 
| [1] | 王忠铖,杨娜. Gerhards模型在针叶木材长期寿命预测中的适用性分析[J]. 林业科学, 2021, 57(12): 132-139. | 
| [2] | 陈芳,程献宝,黄安民,王学顺. 基于人工蜂群算法优化SVM的NIR杉木弹性模量预测[J]. 林业科学, 2021, 57(1): 161-168. | 
| [3] | 王正, 付海燕, 丁叶蔚, 曹瑜, 王韵璐, 吴晓莉, 张统越. 定向刨花板剪切模量和弹性模量动态测试[J]. 林业科学, 2019, 55(8): 136-146. | 
| [4] | 王正, 曹瑜, 王韵璐, 李敏敏. 基于悬臂板扭转模态测试材料剪切模量[J]. 林业科学, 2017, 53(8): 101-112. | 
| [5] | 张帅楠, 栾启福, 姜景民. 基于无损检测技术的湿地松生长及材性性状遗传变异分析[J]. 林业科学, 2017, 53(6): 30-36. | 
| [6] | 王正, 顾玲玲, 高子震, 刘斌. SPF规格材弹性模量的动态测试及其概率分布[J]. 林业科学, 2015, 51(2): 105-111. | 
| [7] | 郭莹洁, 赵荣军, 钟永, 任海青. 基于早晚材的兴安落叶松成熟材力学模型 ——顺纹抗拉弹性模量[J]. 林业科学, 2014, 50(9): 118-123. | 
| [8] | 王正, 高子震, 顾玲玲, 刘斌, 王亚磊, 杨燕. 测试木材剪切模量的自由板扭转振形法[J]. 林业科学, 2014, 50(11): 122-128. | 
| [9] | 张训亚, 姜笑梅, 吕斌, 殷亚方. 声-超声技术评价兴安落叶松规格材的抗弯性质[J]. 林业科学, 2014, 50(10): 94-98. | 
| [10] | 张云伟, 惠尚, 卜晓磊, 尚书磊, 杨承铭. 3种散生竹的单根抗拉力学特性[J]. 林业科学, 2013, 49(7): 183-187. | 
| [11] | 李霞镇;任海青;马少鹏. 基于数字散斑相关方法的竹材变形特性[J]. 林业科学, 2012, 48(9): 115-119. | 
| [12] | 黄艳辉;费本华;余雁;赵荣军;王小青. 酚醛树脂改性对管胞细胞壁力学性能的影响[J]. 林业科学, 2012, 48(12): 89-92. | 
| [13] | 王正;蒋希时;杨小军;何继龙. 木工带锯条的动态张紧力测量与分析[J]. 林业科学, 2012, 48(1): 154-158. | 
| [14] | 郭志仁;张厚江;傅峰. 薄板类中密度纤维板动静态弹性模量的检测[J]. 林业科学, 2011, 47(1): 177-180. | 
| [15] | 吴燕;周定国;王思群;邢成;张洋. 2种农作物秸秆纤维细胞壁的纳米力学性能[J]. 林业科学, 2010, 46(9): 140-143. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||