|  | 代武君, 金慧颖, 张玉红, 等.  植物物候学研究进展. 生态学报, 2020, 40 (19): 6705- 6719. | 
																													
																						|  | Dai W J ,  Ji H Y ,  Zhang Y H , et al.  Advances in plant phenology. Acta Ecologica Sinica, 2020, 40 (19): 6705- 6719. | 
																													
																						|  | 高琪, 周玉科, 范俊甫.  利用R-Shiny架构的植被物候参数分析系统设计与实现. 测绘与空间地理信息, 2019, 42 (2): 68- 72. doi: 10.3969/j.issn.1672-5867.2019.02.020
 | 
																													
																						|  | Gao Q ,  Zhou Y K ,  Fan J F .  Design and implementation of vegetation phenology parameter analysis system based on R-Shiny architecture. Geomatics & Spatial Information Technology, 2019, 42 (2): 68- 72. doi: 10.3969/j.issn.1672-5867.2019.02.020
 | 
																													
																						|  | 纪小芳, 鲁建兵, 杨军, 等.  凤阳山针阔混交林碳通量变化特征及其影响因子. 东北林业大学学报, 2019, 47 (3): 49- 55. | 
																													
																						|  | Ji X F ,  Lu J B ,  Yang J , et al.  Carbon flux variation characteristics and its influencing factors in coniferous and broad-leaved mixed forest in Fengyang Mountain. Journal of Northeast Forestry University, 2019, 47 (3): 49- 55. | 
																													
																						|  | 李润东, 范雅倩, 冯沛, 等.  北京松山天然落叶阔叶林生态系统净碳交换特征及其影响因子. 应用生态学报, 2020, 31 (11): 3621- 3630. | 
																													
																						|  | Li R D ,  Fan Y Q ,  Feng P , et al.  Net ecosystem carbon exchange and its affecting factors in a deciduous broad-leaved forest in Songshan, Beijing, China. Chinese Journal of Applied Ecology, 2020, 31 (11): 3621- 3630. | 
																													
																						|  | 刘鑫, 李文辉, 赵恒和.  高寒草原草地植被物候期及其与气象因子的关系模式. 中国农学通报, 2019, 35 (22): 117- 122. doi: 10.11924/j.issn.1000-6850.casb18100027
 | 
																													
																						|  | Liu X ,  Li W H ,  Zhao H H .  Grassland vegetation in alpine grassland: phenological period and its relation patterns with meteorological factors. Chinese Agricultural Science Bulletin, 2019, 35 (22): 117- 122. doi: 10.11924/j.issn.1000-6850.casb18100027
 | 
																													
																						|  | 谭丞轩, 张智韬, 许崇豪, 等. 2020. 无人机多光谱遥感反演各生育期玉米根域土壤含水率. 农业工程学报, 36(10): 63-74. | 
																													
																						|  | Tan C X, Zhang Z T, Xu C H, et al. Soil water content inversion model in field maize root zone based on UAV multispectral remote sensing. Transactions of the Chinese Society of Agricultural Engineering, 36(10): 63-74. [in Chinese] | 
																													
																						|  | 王连喜, 陈怀亮, 李琪, 等.  植物物候与气候研究进展. 生态学报, 2010, 20 (2): 447- 454. | 
																													
																						|  | Wang L X ,  Chen H L ,  Li Q , et al.  Research advances in plant phenology and climate. Acta Ecologica Sinica, 2010, 20 (2): 447- 454. | 
																													
																						|  | 徐丽君, 唐华俊, 杨桂霞, 等.  贝加尔针茅草原生态系统生长季碳通量及其影响因素分析. 草业学报, 2011, 20 (6): 287- 292. | 
																													
																						|  | Xu L J ,  Tang H J ,  Yang G X , et al.  Variation of net ecosystem carbon flux and its impact factors on Stipa baicalensis steppe in the growing season. Journal of Grass Industry, 2011, 20 (6): 287- 292. | 
																													
																						|  | 徐满厚, 薛娴.  青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应. 生态学报, 2013, 33 (7): 2071- 2083. | 
																													
																						|  | Xu M H ,  Xue X .  A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan plateau. Acta Ecologica Sinica, 2013, 33 (7): 2071- 2083. | 
																													
																						|  | 张学霞, 葛全胜, 郑景云.  遥感技术在植物物候研究中的应用综述. 地球科学进展, 2003, 18 (4): 534- 544. doi: 10.3321/j.issn:1001-8166.2003.04.009
 | 
																													
																						|  | Zhang X X ,  Ge Q S ,  Zheng J Y .  Overview on the vegetation phenology using the remote sensing. Advances in Earth Science, 2003, 18 (4): 534- 544. doi: 10.3321/j.issn:1001-8166.2003.04.009
 | 
																													
																						|  | 周惠慧, 付东杰, 张立福, 等.  基于数字相机的草地物候模拟及其与气象因子关系的研究. 遥感技术与应用, 2016, 31 (5): 966- 974. | 
																													
																						|  | Zhou H H ,  Fu D J ,  Zhang L F , et al.  Modeling grassland phenology and analyzing relationship with corresponding meteorological factors based on digital camera. Remote Sensing Technology and Application, 2016, 31 (5): 966- 974. | 
																													
																						|  | 周磊, 何洪林, 孙晓敏, 等.  基于数字相机的冬小麦物候和碳交换监测. 生态学报, 2012a, 32 (16): 5146- 5153. | 
																													
																						|  | Zhou L ,  He H L ,  Sun X M , et al.  Using digital repeat photography to model winter wheat phenology and photosynthetic CO2 uptake. Acta Ecologica Sinica, 2012a, 32 (16): 5146- 5153. | 
																													
																						|  | 周磊, 何洪林, 孙晓敏, 等.  基于数字相机图像的西藏当雄高寒草地群落物候模拟. 植物生态学报, 2012b, 36 (11): 1125- 1135. | 
																													
																						|  | Zhou L ,  He H L ,  Sun X M , et al.  Simulations of phenology in alpine grassland communities in Damxung, Xizang, based on digital camera images. Chinese Journal of Plant Ecology, 2012b, 36 (11): 1125- 1135. | 
																													
																						|  | 周玉科.  基于数码照片的植被物候提取多方法比较研究. 地理科学进展, 2018, 37 (8): 1031- 1044. | 
																													
																						|  | Zhou Y K .  Comparative study of vegetation phenology extraction methods based on digital images. Progress in Geography, 2018, 37 (8): 1031- 1044. | 
																													
																						|  | Ahrends H E ,  Brügger R ,  Stöckli R , et al.  Quantitative phenological observations of a mixed beech forest in northern Switzerland with digital photography. Journal of Geophysical Research: Earth Surface, 2008, 113 (G4): 116- 122. | 
																													
																						|  | Ahrends H E ,  Etzold S ,  Kutsch W L , et al.  Tree phenology and carbon dioxide fluxes: use of digital photography at for process-based interpretation the ecosystem scale. Climate Research, 2009, 39 (3): 261- 274. | 
																													
																						|  | Berra E F ,  Gaulton R ,  Barr S .  Assessing spring phenology of a temperate woodland: a multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations. Remote Sensing of Environment, 2019, 223, 229- 242. doi: 10.1016/j.rse.2019.01.010
 | 
																													
																						|  | Berra E F ,  Gaulton R .  Remote sensing of temperate and boreal forest phenology: a review of progress, challenges and opportunities in the intercomparison of in-situ and satellite phenological metrics. Forest Ecology and Management, 2021, 480, 118663. doi: 10.1016/j.foreco.2020.118663
 | 
																													
																						|  | Browning D M ,  Karl J W ,  Morin D , et al.  Phenocams bridge the gap between field and satellite observations in an arid grassland ecosystem. Remote Sensing, 2017, 9 (10): 1071. doi: 10.3390/rs9101071
 | 
																													
																						|  | Campillo C ,  Prieto M H ,  Daza C , et al.  Using digital images to characterize canopy coverage and light interception in a processing tomato crop. Hortscience, 2008, 43 (6): 1780- 1786. doi: 10.21273/HORTSCI.43.6.1780
 | 
																													
																						|  | Chen Z ,  Yu G R ,  Wang Q F .  Effects of climate and forest age on the ecosystem carbon exchange of afforestation. Journal of Forestry Research, 2020, 31 (2): 365- 374. doi: 10.1007/s11676-019-00946-5
 | 
																													
																						|  | Du Q ,  Liu H Z ,  Li Y H , et al.  The effect of phenology on the carbon exchange process in grassland and maize cropland ecosystems across a semiarid area of China. Science of the Total Environment, 2019, 695 (10): 133868. | 
																													
																						|  | Elmore A J ,  Guinn S M ,  Minsley B J , et al.  Landscape controls on the timing of spring, autumn, and growing season length in mid Atlantic forests. Global Change Biology, 2012, 18 (2): 656- 674. doi: 10.1111/j.1365-2486.2011.02521.x
 | 
																													
																						|  | Hinko-Najera N ,  Isaac P ,  Beringer J , et al.  Net ecosystem carbon exchange of a dry temperate eucalypt forest. Biogeosciences Discussions, 2016, 14 (16): 3781- 3800. | 
																													
																						|  | Huang K ,  Xia J Y ,  Wang Y P , et al.  Enhanced peak growth of global vegetation and its key mechanisms. Nature Ecology & Evolution, 2018, 2, 1897- 1905. | 
																													
																						|  | Kang X ,  Hao Y ,  Cui X , et al.  Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sensing, 2016, 8 (5): 391- 405. doi: 10.3390/rs8050391
 | 
																													
																						|  | Keenan T F ,  Gray J ,  Friedl M A , et al.  Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 2014, 4, 598- 604. doi: 10.1038/nclimate2253
 | 
																													
																						|  | Klosterman S T ,  Hufkens K ,  Gray J M , et al.  Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences, 2014, 11, 4305- 4320. doi: 10.5194/bg-11-4305-2014
 | 
																													
																						|  | Kurc S A ,  Benton L M .  Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland. Journal of Arid Environments, 2010, 74 (5): 585- 594. doi: 10.1016/j.jaridenv.2009.10.003
 | 
																													
																						|  | Melaas E K ,  Friedl M A ,  Richardson A D .  Multiscale modeling of spring phenology across deciduous forests in the eastern United States. Global Change Biology, 2016, 22 (2): 792- 805. doi: 10.1111/gcb.13122
 | 
																													
																						|  | Richardson A D ,  Hufkens K ,  Milliman T , et al.  Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1. 0 and MODIS satellite remote sensing. Scientific Reports, 2018, 8 (1): 5679. doi: 10.1038/s41598-018-23804-6
 | 
																													
																						|  | Richardson A D ,  Hollinger D Y ,  Dail D B , et al.  Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiology, 2009, 29 (3): 321- 331. doi: 10.1093/treephys/tpn040
 | 
																													
																						|  | Richardson A D ,  Keenan T F ,  Migliavacca M , et al.  Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169 (3): 156- 173. | 
																													
																						|  | Seyednasrollah B, Young A M, Li X L, et al. 2020. Sensitivity of deciduous forest phenology to environmental drivers: implications for climate change impacts across north America. Geophysical Research Letters, 47(5): e2019GL086788. | 
																													
																						|  | Sonnentag O ,  Hufkens K ,  Teshera-Sterne C , et al.  Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology, 2012, 152, 159- 177. doi: 10.1016/j.agrformet.2011.09.009
 | 
																													
																						|  | Wang S H ,  Zhang L F ,  Huang C P , et al.  An NDVI-based vegetation phenology is improved to be more consistent with photosynthesis dynamics through applying a light use efficiency model over boreal high-latitude forests. Remote Sensing, 2017, 9 (7): 695. doi: 10.3390/rs9070695
 | 
																													
																						|  | Wang Y D ,  Tang X G ,  Yu L F , et al.  Comparison of net ecosystem carbon exchange estimation in a mixed temperate forest using field eddy covariance and MODIS data. SpringerPlus, 2016, 5, 491. doi: 10.1186/s40064-016-2134-4
 | 
																													
																						|  | Wharton S ,  Falk M .  Climate indices strongly influence old-growth forest carbon exchange. Environmental Research Letters, 2016, 11 (4): 044016. doi: 10.1088/1748-9326/11/4/044016
 | 
																													
																						|  | Xie J ,  Zha T S ,  Zhou C , et al.  Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought. Agricultural and Forest Meteorology, 2016, 221, 142- 151. doi: 10.1016/j.agrformet.2016.02.013
 | 
																													
																						|  | Yao F Z ,  Coquery J ,  Lê Cao K A .  Independent principal component analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics, 2012, 13, 24. doi: 10.1186/1471-2105-13-24
 | 
																													
																						|  | Zha T S ,  Barr A G ,  Black T A , et al.  Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology, 2009, 15 (6): 1475- 1487. doi: 10.1111/j.1365-2486.2008.01817.x
 | 
																													
																						|  | Zhang L X ,  Lei H M ,  Shen H , et al.  Evaluating the representation of vegetation phenology in the community land model 4. 5 in a temperate grassland. Journal of Geophysical Research: Biogeosciences, 2019, 124 (2): 187- 210. doi: 10.1029/2018JG004866
 | 
																													
																						|  | Zhou L ,  He H L ,  Sun X M , et al.  Species-and community-scale simulation of the phenology of a temperate forest in Changbai Mountain based on digital camera images. Journal of Resources and Ecology, 2013, 4 (4): 317- 326. doi: 10.5814/j.issn.1674-764x.2013.04.004
 | 
																													
																						|  | Zhou Y K .  Greenness index from phenocams performs well in linking climatic factors and monitoring grass phenology in a temperate prairie ecosystem. Journal of Resources and Ecology, 2019, 10 (5): 481- 493. doi: 10.5814/j.issn.1674-764x.2019.05.003
 |