程龙军, 童再康, 黄华宏, 等. 2010. 光皮桦中4-香豆酸辅酶 A 连接酶基因Bl4CL的克隆和表达分析. 植物生理学通讯, (1): 5-10. (Cheng L J, Tong Z K, Huang H H, et al. 2010. Cloning and expression analysis of 4-coumarate: CoA ligase gene Bl4CL in Betula luminifera H. Winkl. Plant Physiology Communications, (1): 5-10. [in Chinese]) 何辉, 楼雄珍, 林二培, 等. 2016. 光皮桦应拉木的显微特征及其形成早期内源激素分布. 林业科学, 52(10): 38-44. (He H, Lou X Z, Lin E P, et al. 2016. Xylem characteristics of tension wood and endogenous hormones distributions during its early formation period in Betula luminifera. Scientia Silvae Sinicae, 52(10): 38-44. [in Chinese]) 黄华宏. 2012. 基于转录组测序的光皮桦应拉木形成分子机制研究. 杭州: 浙江大学博士学位论文. (Huang H H. 2012. Studies on molecular mechanism of tension wood formation in Betula luminifera using RNA-Seq. Hangzhou: PhD thesis of Zhejiang University. [in Chinese]) 江成. 2014. 光皮桦BlOFPs基因的克隆及其功能研究. 杭州: 浙江农林大学硕士学位论文. (Jiang C. 2014. Isolation and functional analysis of BlOFPs genes in Betula luminifera. Hangzhou: MS thesis of Zhejiang Agricultural and Forestry University. [in Chinese]) 刘雪梅. 2005. 白桦木质素生物合成酶基因分离及遗传转化的研究. 哈尔滨: 东北林业大学博士学位论文. (Liu X M. 2005. Genes isolation and genetic transformation of biosynthetic enzymes in Betula platyphylla. Harbin: PhD thesis of Northeast Forestry University. [in Chinese]) Bomal C, Bedon F, Caron S, et al. 2008. Involvement of Pinus taeda MYB1 and MYB8 in phenylpropanoid metabolism and secondary cell wall biogenesis: a comparative in planta analysis. Journal of Experimental Botany, 59(14): 3925-3939. Campanella J J, Bitincka L, Smalley J. 2003. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics, 4(1): 29. Chai G, Wang Z, Tang X, et al. 2014. R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. Journal of Experimental Botany, 65(15): 4255-4269. Demura T, Fukuda H. 2006. Transcriptional regulation in wood formation. Trends in Plant Science, 12(2): 64-70. Goicoechea M, Lacombe E, Legay S, et al. 2005. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant Journal, 43(4):553-567. Groover A T. 2005. What genes make a tree a tree? Trends in Plant Science, 10(5): 210-214. Groover A, Robischon M. 2006. Developmental mechanisms regulating secondary growth in woody plants. Current Opinion in Plant Biology, 9(1): 55-58. Huang H, Jiang C, Tong Z, et al. 2014. Eight distinct cellulose synthase catalytic subunit genes from Betula luminifera are associated with primary and secondary cell wall biosynthesis. Cellulose, 21(4): 2183-2198. Kalluri U C, Joshi C P. 2004. Differential expression patterns of two cellulose synthase genes are associated with primary and secondary cell wall development in aspen trees. Planta, 220(1): 47-55. Karpinska B, Karlesson M, Srivastava M, et al. 2004. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology, 56(2): 255-270. Krauskopf E, Harris P J, Putterill J. 2005. The cellulose synthase gene PrCESA10 is involved in cellulose biosynthesis in developing tracheids of the gymnosperm Pinus radiata. Gene, 350(2):107-116. Larson P R. 2012. The vascular cambium: development and structure. Springer Science & Business Media. Li C, Wang X, Lu W, et al. 2014. A poplar R2R3-MYB transcription factor, PtrMYB152, is involved in regulation of lignin biosynthesis during secondary cell wall formation. Plant Cell, Tissue and Organ Culture, 119(3): 553-563. Li C, Wang X, Ran L, et al. 2015. PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation in Populus tomentosa. Plant and Cell Physiology, 56(12): 2436-2446. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402-408. McCarthy R L, Zhong R, Fowler S, et al. 2010. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant and Cell Physiology, 51(6): 1084-1090. Nairn C J, Haselkorn T. 2005. Three loblolly pine CesA genes expressed in developing xylem are orthologous to secondary cell wall CesA genes of angiosperms. New Phytologist, 166(3): 907-915. Obayashi T, Kinoshita K, Nakai K, et al. 2007. ATTED-Ⅱ: a database of co-expressed genes and cis elements for identifying co-regulated gene groups in Arabidopsis. Nucleic Acids Research, 35(suppl 1): D863-D869. Öhman D, Demedts B, Kumar M, et al. 2013. MYB103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in Arabidopsis stems. The Plant Journal, 73(1): 63-76. Patzlaff A, Mclnnis S, Courtenay A, et al. 2003. Characterisation of a pine MYB that regulates lignification. The Plant Journal, 36(6):743-754. Vélez-Bermúdez I C, Salazar-Henao J E, Fornalé S, et al. 2015. A MYB/ZML complex regulates wound-induced lignin genes in maize. The Plant Cell, 27(11): 3245-3259. Wu L, Joshi C P, Chiang V L.2000. A xylem-specific cellulose synthase gene from aspen (Popolus tremuloides) is responsive to mechanical stress. The Plant Journal, 22(6):495-502. Zhong R, Lee C, Zhou J, et al. 2008. A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. The Plant Cell, 20(10): 2763-2782. Zhong R, McCarthy R L, Lee C, et al. 2011. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiology, 157(3): 1452-1468. Zhong R, Mccarthy R L, Haghighat M, et al. 2013. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS One, 8(7): e69219. |