Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (3): 189-198.doi: 10.11707/j.1001-7488.LYKX20230466
• Research papers • Previous Articles Next Articles
Kaiqiang Zhang1,Shuangbao Zhang2,3,*()
Received:
2023-10-07
Online:
2025-03-25
Published:
2025-03-27
Contact:
Shuangbao Zhang
E-mail:shuangbaozhang@163.com
CLC Number:
Kaiqiang Zhang,Shuangbao Zhang. Interface Properties of Bamboo Fiber Reinforced Polylactic Acid Composite Modified by Nano-SiO2 Biomimetic Mineralization[J]. Scientia Silvae Sinicae, 2025, 61(3): 189-198.
程海涛. 2016. 竹纤维表面CaCO3改性及增强竹塑复合材料界面研究. 北京: 北京林业大学. | |
Cheng H T. 2016. Enhancement of interfacial adhesion between bamboo fiber and thermoplastic polymer by calcium carbonate deposition in situ on bamboo fiber. Beijing: Beijing Forestry University. [in Chinese] | |
崔文博, 梁婷婷, 王一冰, 等. 用木质纳米纤维素为模板制备的介孔二氧化钛光催化还原Cr(Ⅵ)的研究. 森林工程, 2023, 39 (6): 101- 108. | |
Cui W B, Liang T T, Wang Y B, et al. Photocatalytic reduction of Cr(Ⅵ) by mesoporous titanium dioxide prepared by lignocellulose nanocrys-talline template method. Forest Engineering, 2023, 39 (6): 101- 108. | |
丁 雯. 竹纤维基纳米二氧化硅杂化改性的物化性能. 上海纺织科技, 2023, 51 (11): 9- 12, 70. | |
Ding W. Physicochemical properties of hybrid modification of bamboo fiber based nano silica. Shanghai Textile Science & Technology, 2023, 51 (11): 9- 12, 70. | |
郝丞艺, 张凯强, 宋 伟, 等. 木聚糖酶改性对竹粉/聚乳酸复合材料性能的影响. 林业工程学报, 2020, 5 (3): 36- 40. | |
Hao C Y, Zhang K Q, Song W, et al. Influence of xylanase treatment on properties of bamboo powder/polylactic acid composites. Journal of Forestry Engineering, 2020, 5 (3): 36- 40. | |
洪工画. 2018. 竹粉/PBS复合材料界面的聚多巴胺改性与表征. 北京: 北京林业大学. | |
Hong G H. 2018. Interface modification and characterization of bamboo flour/PBS composites with poly (dopamine). Beijing: Beijing Forestry University. [in Chinese] | |
黄爱宾, 刘彩凤, 张晓惠. 聚乳酸共混的研究进展. 材料导报, 2020, 34 (S2): 1586- 1589. | |
Huang A B, Liu C F, Zhang X H. Research progress of polylactic acid blending. Materials Reports, 2020, 34 (S2): 1586- 1589. | |
李文婷, 李明鹏, 程海涛, 等. 环保高效制备竹纤维研究进展. 林业科学, 2022, 58 (11): 160- 173.
doi: 10.11707/j.1001-7488.20221115 |
|
Li W T, Li M P, Cheng H T, et al. Development of environmentally friendly and efficient bamboo fiber processing. Scientia Silvae Sinicae, 2022, 58 (11): 160- 173.
doi: 10.11707/j.1001-7488.20221115 |
|
鲁 捷, 徐开蒙, 陈勇军, 等. 高温热处理杨木粉对木塑复合材料界面结合性能影响. 林产工业, 2015, 52 (8): 25- 28.
doi: 10.3969/j.issn.1001-5299.2015.08.007 |
|
Lu J, Xu K M, Chen Y J, et al. Effect of high temperature thermal treatment of wood flour on interfacial bonding of wood plastic composites. China Forest Products Industry, 2015, 52 (8): 25- 28.
doi: 10.3969/j.issn.1001-5299.2015.08.007 |
|
王翠翠, 李明鹏, 王 戈, 等. 植物纤维/热塑性聚合物预浸料在汽车轻量化领域的应用进展. 林业科学, 2021, 57 (9): 168- 180.
doi: 10.11707/j.1001-7488.20210917 |
|
Wang C C, Li M P, Wang G, et al. Application progress of plant fiber/thermoplastic polymer prepreg in automotive lightweight field. Scientia Silvae Sinicae, 2021, 57 (9): 168- 180.
doi: 10.11707/j.1001-7488.20210917 |
|
许 威, 曹 军, 花 军, 等. 基于纤维解离高应变率加载对木材动力学特性影响分析. 森林工程, 2023, 39 (6): 88- 94. | |
Xu W, Cao J, Hua J, et al. The influence of high strain rate loading on wood dynamic characteristics based on fiber dissociation. Forest Engineering, 2023, 39 (6): 88- 94. | |
张凯强, 陈政豪, 郝丞艺, 等. 竹塑复合材料界面改性研究. 世界林业研究, 2018, 31 (4): 59- 63. | |
Zhang K Q, Chen Z H, Hao C Y, et al. Research progress on interface modification of bamboo-plastic composites. World Forestry Research, 2018, 31 (4): 59- 63. | |
赵丽媛. 2010. 竹麻纤维织物及其纺织复合材料拉伸性能研究. 北京: 北京林业大学. | |
Zhao L Y. 2010. Study on the tensile properties of bamboo/ramie fiber fabrics and textile composites. Beijing: Beijing Forestry University. [in Chinese] | |
周吉喆. 2020. 竹粉/PBAT复合材料制备及性能研究. 北京: 北京林业大学. | |
Zhou J Z. 2020. Study on preparation and properties of bamboo fiber/poly (butyleneadipate-co-terephthalate) composites. Beijing: Beijing Forestry University. [in Chinese] | |
周亚巍, 宁莉萍, 李贤伟, 等. 2015. 铝矾土改性竹粉/HDPE 复合材料性能. 复合材料学报, 32(4): 977−982. | |
Zhou Y W, Ning L P, Li X W, et al. 2015. Properties of bamboo flour/HDPE composites modified by bauxite. Acta Materiae Compositae Sinica, 32(4): 977−982. [in Chinese]) | |
朱亮亮, 陈太安, 郑永军, 等. TiO2@SiO2-脱木素木材的制备及其耐光性增强. 林业科学, 2022, 58 (3): 129- 138.
doi: 10.11707/j.1001-7488.20220314 |
|
Zhu L L, Chen T A, Zheng Y J, et al. Preparation and enhanced photostability of TiO2@SiO2-delignified wood. Scientia Silvae Sinicae, 2022, 58 (3): 129- 138.
doi: 10.11707/j.1001-7488.20220314 |
|
Amorim L, Santos A, Nunes J P, et al. Bioinspired approaches for toughening of fibre reinforced polymer composites. Materials & Design, 2021, 199, 109336. | |
Chen C, Li H T, Dauletbek A, et al. Properties and applications of bamboo fiber: a current-state-of-the art. Journal of Renewable Materials, 2022, 10 (3): 605- 624.
doi: 10.32604/jrm.2022.018685 |
|
Chen L, Jin H, Xu Z W, et al. Role of a gradient interface layer in interfacial enhancement of carbon fiber/epoxy hierarchical composites. Journal of Materials Science, 2015, 50 (1): 112- 121.
doi: 10.1007/s10853-014-8571-y |
|
Díez-Pascual A M, Naffakh M, Marco C, et al. Multiscale fiber-reinforced thermoplastic composites incorporating carbon nanotubes: a review. Current Opinion in Solid State and Materials Science, 2014, 18 (2): 62- 80.
doi: 10.1016/j.cossms.2013.06.003 |
|
Farzad E, Veisi H. Fe3O4/SiO2 nanoparticles coated with polydopamine as a novel magnetite reductant and stabilizer sorbent for palladium ions: synthetic application of Fe3O4/SiO2@PDA/Pd for reduction of 4-nitrophenol and suzuki reactions. Journal of Industrial and Engineering Chemistry, 2018, 60, 114- 124.
doi: 10.1016/j.jiec.2017.10.017 |
|
Garlotta D. A literature review of poly(lactic acid). Journal of Polymers and the Environment, 2001, 9 (2): 63- 84.
doi: 10.1023/A:1020200822435 |
|
Hong G H, Cheng H T, Zhang S B, et al. Mussel-inspired reinforcement of a biodegradable aliphatic polyester with bamboo fibers. Journal of Cleaner Production, 2021, 296, 126587.
doi: 10.1016/j.jclepro.2021.126587 |
|
Ilyas R A, Zuhri M Y M, Aisyah H A, et al. Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers, 2022, 14 (1): 202.
doi: 10.3390/polym14010202 |
|
Kabir E, Kaur R, Lee J, et al. Prospects of biopolymer technology as an alternative option for non-degradable plastics and sustainable management of plastic wastes. Journal of Cleaner Production, 2020, 258, 120536.
doi: 10.1016/j.jclepro.2020.120536 |
|
Le Troedec M, Sedan D, Peyratout C, et al. Influence of various chemical treatments on the composition and structure of hemp fibres. Composites Part A: Applied Science and Manufacturing, 2008, 39 (3): 514- 522.
doi: 10.1016/j.compositesa.2007.12.001 |
|
Lee W, Lee J, Chung J W, et al. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: the effect of mesophase transition on mechanical properties. International Journal of Biological Macromolecules, 2021, 193, 1103- 1113.
doi: 10.1016/j.ijbiomac.2021.09.205 |
|
Liu L J, Yuan Z Q, Fan X K, et al. A review of interfacial bonding mechanism of bamboo fiber reinforced polymer composites. Cellulose, 2022, 29 (1): 83−100.
doi: 10.1007/s10570-021-04242-6 |
|
Manral A, Kumar Bajpai P, Ahmad F, et al. Processing of sustainable thermoplastic based biocomposites: a comprehensive review on performance enhancement. Journal of Cleaner Production, 2021, 316, 128068.
doi: 10.1016/j.jclepro.2021.128068 |
|
More A P. Flax fiber-based polymer composites: a review. Advanced Composites and Hybrid Materials, 2022, 5 (1): 1- 20.
doi: 10.1007/s42114-021-00246-9 |
|
Mousavi S R, Zamani M H, Estaji S, et al. Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies. Journal of Materials Science, 2022, 57 (5): 3143- 3167.
doi: 10.1007/s10853-021-06854-6 |
|
Rosli N A, Karamanlioglu M, Kargarzadeh H, et al. Comprehensive exploration of natural degradation of poly (lactic acid) blends in various degradation media: a review. International Journal of Biological Macromolecules, 2021, 187, 732- 741.
doi: 10.1016/j.ijbiomac.2021.07.196 |
|
Singh J K, Rout A K, Kumari K. A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites. Carbohydrate Polymers, 2021, 262, 117929.
doi: 10.1016/j.carbpol.2021.117929 |
|
Stefaniak K, Masek A. Green copolymers based on poly(lactic acid): short review. Materials, 2021, 14 (18): 5254.
doi: 10.3390/ma14185254 |
|
Wu D L, Yao Z Q, Sun X Y, et al. Mussel-tailored carbon fiber/carbon nanotubes interface for elevated interfacial properties of carbon fiber/epoxy composites. Chemical Engineering Journal, 2022, 429, 132449.
doi: 10.1016/j.cej.2021.132449 |
|
Zhang X Q, Fan X Y, Yan C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Applied Materials & Interfaces, 2012, 4 (3): 1543- 1552. | |
Zhao X P, Li J C, Liu J C, et al. Recent progress of preparation of branched poly (lactic acid) and its application in the modification of polylactic acid materials. International Journal of Biological Macromolecules, 2021, 193, 874- 892.
doi: 10.1016/j.ijbiomac.2021.10.154 |
[1] | Wenting Li,Mingpeng Li,Haitao Cheng,Jihe Chen,Ge Wang. Development of Environmentally Friendly and Efficient Bamboo Fiber Processing [J]. Scientia Silvae Sinicae, 2022, 58(11): 160-173. |
[2] | Meng Fandan, Wang Chao, Xiang Qin, Yu Yanglun, Yu Wenji. Effect of Hot Dry Air Treated Defibering Bamboo Veneer on the Properties of Bamboo-Based Fiber Composites [J]. Scientia Silvae Sinicae, 2019, 55(9): 142-148. |
[3] | Qin Lizhe, Lin Lanying, Fu Feng. Novel Sample Preparation Methodology of Wood/Adhesive Interphase for Microstructure Study-Laser Ablation Technique [J]. Scientia Silvae Sinicae, 2018, 54(4): 93-99. |
[4] | Sun Xiaoting, Chang Liang, Tang Qiheng, Ren Yiping, Guo Wenjing. Effects of Isothermal Crystallization on the Properties of Wood Fiber/PLA Composites [J]. Scientia Silvae Sinicae, 2018, 54(3): 97-107. |
[5] | Wang Haigang, Zhang Jingfa, Wang Weihong, Wang Qingwen. Research of Fiber Reinforced Wood-Plastic Composites: a Review [J]. Scientia Silvae Sinicae, 2016, 52(6): 130-139. |
[6] | Lin Lanying, Qin Lizhe, Fu Feng. Development of Micromechanical Technique and Application on Wood Science [J]. Scientia Silvae Sinicae, 2015, 51(2): 121-128. |
[7] | Lü Shaoyi, Fu Feng, Wang Siqun, Huang Jingda, Hu La. Advances in Nanocellulose-Based Electroconductive Composites [J]. Scientia Silvae Sinicae, 2015, 51(10): 117-125. |
[8] | Chen Hong, Tian Genlin, Fei Benhua. Arrangement of Cellulose Microfibrils in Primary Cell Wall of Moso Bamboo Fiber Studied with AFM [J]. Scientia Silvae Sinicae, 2014, 50(4): 90-94. |
[9] | Yu Yanglun, Qin Li, Yu Wenji. Manufacturing Technology of Bamboo-Based Fiber Composites Used as Outdoor Flooring [J]. Scientia Silvae Sinicae, 2014, 50(1): 133-139. |
[10] | Zhang Yamei;Yu Wenji. Effect of Thermal Treatment on the Properties of Bamboo-Based Fiber Composites [J]. , 2013, 49(5): 160-168. |
[11] | Yu Yanglun;Meng Fandan;Yu Wenji. Manufacturing Technology of Bamboo-Fiber Based Composites Used as Container Flooring [J]. Scientia Silvae Sinicae, 2013, 49(3): 116-121. |
[12] | Wang Hui, Di Mingwei, Wang Qingwen. Effect of Heat on the Surface Properties for Wood/Polyethylene Composites Treated by Silicane Coupling Agent [J]. Scientia Silvae Sinicae, 2013, 49(12): 114-120. |
[13] | Liu Yinan, Guo Wenjing. Research Status and Trend on Crystallization Kinetics of Natural Plant Fiber/Crystalline Polymer Composites [J]. Scientia Silvae Sinicae, 2013, 49(11): 158-163. |
[14] | Sun Bailing;Liu Junliang. Analysis of Natural Bamboo Fiber and Jute Fiber with Fourier Transform Infrared Spectroscopy and Two-Dimensional IR Correlation Spectroscopy [J]. Scientia Silvae Sinicae, 2012, 48(7): 114-119. |
[15] | Chu Shuyi;Xiao Jibo;Zhang Liqin;Chen Bin. Treatment of Mixed Wastewater with Bamboo Fiber Biofilm Carrier Contact Oxidation Reactor [J]. Scientia Silvae Sinicae, 2012, 48(12): 83-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||