Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (3): 38-49.doi: 10.11707/j.1001-7488.LYKX20240259
• Special subject: Infusing science into the Great Green Wall • Previous Articles Next Articles
Niuniu Cui1,Jianzhuang Pang1,Yifan Zhang1,Hang Xu1,2,3,Qin Zhang1,Zhiqiang Zhang1,2,3,*()
Received:
2024-05-08
Online:
2025-03-25
Published:
2025-03-27
Contact:
Zhiqiang Zhang
E-mail:zhqzhang@bjfu.edu.cn
CLC Number:
Niuniu Cui,Jianzhuang Pang,Yifan Zhang,Hang Xu,Qin Zhang,Zhiqiang Zhang. Impacts of Climate Change and Vegetation Restoration on Hydrology in a Typical Watershed of Haihe Basin: A Case Study of Qingshuihe Watershed in Zhangjiakou[J]. Scientia Silvae Sinicae, 2025, 61(3): 38-49.
Table 1
14 SWAT model parameters with high sensitivity for monthly runoff simulation in Qingshuihe watershed and their optimum range"
参数名称Parameter name | 调整方法Adjustment methods | 文件格式File format | 参数描述Parameter description | 初始范围 Initial range | 最适范围 Optimum range | |||
最小值Minimum value | 最大值Maximum value | 最小值Minimum value | 最大值Maximum value | |||||
CN2 | r | .mgt | 土壤保护服务的径流曲线数Soil conservation services runoff curve number | –0.5 | 0.5 | 0.13 | 0.22 | |
SOL_Z() | r | .sol | 土壤表层到底层深度Depth from soil surface to bottom of layer/mm | –0.5 | 0.5 | –0.12 | 0.06 | |
CANMX | v | .hru | 最大冠层蓄水量Maximum canopy storage/mm | 0 | 100 | 43.51 | 61.93 | |
SMFMN | v | .bsn | 一年中积雪的最小融化速率(冬至日)Minimum melt rate for snow during the year ( winter solstice )/(mm·℃–1d–1) | 0 | 20 | 2.45 | 5.17 | |
SOL_K() | r | .sol | 土壤饱和导水率Soil saturated hydraulic conductivity/(mm·h?1) | –0.8 | 0.8 | –0.51 | –0.07 | |
ESCO | v | .hru | 调整土壤表层蒸发速率的系数Adjusting the coefficient of soil surface evaporation rate | 0 | 1 | 0.51 | 0.65 | |
RCHRG_DP | v | .gw | 浅层地下水渗透到深层地下水的水量比例Proportion of water percolating from shallow groundwater to deep groundwater | 0 | 1 | 0.84 | 0.96 | |
GW_REVAP | v | .gw | 地下水返回土壤层的水量比例Proportion of groundwater returning to the soil layer | 0.02 | 0.2 | 0.04 | 0.08 | |
SFTMP | v | .bsn | 降雪气温Snowfall temperature/℃ | –20 | 20 | –6.94 | –3.97 | |
CH_N2 | v | .rte | 主河道曼宁系数Main channel Manning coefficient | –0.01 | 0.3 | 0.22 | 0.27 | |
OV_N | v | .hru | 坡面流曼宁系数Manning coefficient of overland flow | 0.01 | 30 | 3.14 | 10.11 | |
HRU_SLP | r | .hru | 平均坡度Mean slope steepness/(°) | 0 | 1 | 0.81 | 0.89 | |
TLAPS | v | .sub | 气温递减率Temperature lapse rate/(℃·km?1) | –10 | 10 | –4.36 | –1.76 | |
EPCO | v | .hru | 调整植物从土壤中吸收水分效率的系数Adjusting the coefficient of water uptake efficiency of plants from soil | 0 | 1 | 0.51 | 0.62 |
Table 3
Variation of meteorological and hydrological parameters and the relative contribution of climate change and vegetation restoration to the changes of hydrological parameters in Qingshuihe watershed"
气象、水文指标 Meteorological and hydrological parameters | 基准期 Base period(S1) | 植被恢复期 Vegetation restoration period(S4) | 总变化 Total change | 各因素导致的变化量 Changes caused by each factor | 相对贡献率 Relative contribution rate(%) | |||
气候变化 Climate change | 植被恢复 Vegetation restoration | 气候变化 Climate change | 植被恢复 Vegetation restoration | |||||
降水量Precipitation /mm | 433.73 | 454.37 | 20.64 | — | — | — | — | |
气温 Air temperature /℃ | 4.50 | 5.10 | 0.60 | — | — | — | — | |
干旱指数Drought index | 1.45 | 1.57 | 0.12 | — | — | — | — | |
地表径流 Surface runoff /mm | 5.09 | 3.97 | ?1.12 | 0.31 | ?1.43 | 27.68 | ?127.68 | |
壤中流 Lateral flow /mm | 6.15 | 5.77 | ?0.38 | 0.08 | ?0.46 | 21.05 | ?121.05 | |
0~100 cm土层土壤含水量 0–100 cm soil layer soil water content /mm | 30.12 | 27.99 | ?2.13 | ?0.91 | ?1.22 | ?42.72 | ?57.28 | |
实际蒸散发 Actual evapotranspiration /mm | 418.04 | 436.56 | 18.52 | 16.20 | 2.32 | 87.47 | 12.53 |
阿里木江·卡斯木, 张雪玲, 梁洪武. 天山北坡城市群季节性地表温度与景观格局空间关系分析. 地理研究, 2024, 43 (5): 1267- 1287.
doi: 10.11821/dlyj020230795 |
|
Kasimu A L M J, Zhang X L, Liang H W. The spatial relationship between seasonal surface temperature and landscape pattern of the urban agglomeration on the northern slope of the Tianshan mountains. Geographical Research, 2024, 43 (5): 1267- 1287.
doi: 10.11821/dlyj020230795 |
|
曹文旭. 2022. 潮河流域水循环演变规律及其对气候变化的响应预估. 北京: 北京林业大学. | |
Cao W X. 2022. Evolution of the water cycle and its response to predicted climate change in the Chaohe watershed. Beijing: Beijing Forestry University. [in Chinese] | |
曹文旭, 张志强, 查同刚, 等. 基于Budyko假设的潮河流域气候和植被变化对实际蒸散发的影响研究. 生态学报, 2018, 38 (16): 5750- 5758. | |
Cao W X, Zhang Z Q, Zha T G, et al. Exploring the effects of vegetation dynamics and climate changes on the Chaohe watershed actual evapotranspiration—Budyko hypothesis approach. Acta Ecologica Sinica, 2018, 38 (16): 5750- 5758. | |
丁相毅, 贾仰文, 王 浩, 等. 气候变化对海河流域水资源的影响及其对策. 自然资源学报, 2010, 25 (4): 604- 613. | |
Ding X Y, Jia Y W, Wang H, et al. Impacts of climate change on water resources in the Haihe river basin and corresponding countermeasures. Journal of Natural Resources, 2010, 25 (4): 604- 613. | |
冯 棋, 杨 磊, 王 晶, 等. 黄土丘陵区植被恢复的土壤碳水效应. 生态学报, 2019, 39 (18): 6598- 6609. | |
Feng Q, Yang L, Wang J, et al. Response of soil moisture and soil organic carbon to vegetation restoration in deep soil profiles in Loess Hilly region. Acta Ecologica Sinica, 2019, 39 (18): 6598- 6609. | |
郭军庭, 张志强, 王盛萍, 等. 应用SWAT模型研究潮河流域土地利用和气候变化对径流的影响. 生态学报, 2014, 34 (6): 1559- 1567. | |
Guo J T, Zhang Z Q, Wang S P, et al. Appling SWAT model to explore the impact of changes in land use and climate on the streamflow in a watershed of Northern China. Acta Ecologica Sinica, 2014, 34 (6): 1559- 1567. | |
郭伟伟. 2012. 张家口地区植被覆盖度动态分析研究. 北京: 北京林业大学. | |
Guo W W. 2012. Vegetable coverage dynamic research and analysis in Zhangjiakou. Beijing: Beijing Foresty University. [in Chinese] | |
侯金龙, 马志强, 杨 澄, 等. 京津冀地区植被碳源/汇的时空变化特征及影响因素分析. 生态环境学报, 2024, 33 (9): 1329- 1338. | |
Hou J L, Ma Z Q, Yang C, et al. Analysis of spatio-temporal variation of vegetation carbon sources and sinks in the Beijing-Tianjin-Hebei region and influencing factors. Ecology and Environmental Sciences, 2024, 33 (9): 1329- 1338. | |
李发文, 陶仁杰. 变化环境下子牙河流域水文过程影响要素分析. 水资源保护, 2023, 39 (5): 9- 17.
doi: 10.3880/j.issn.1004-6933.2023.05.002 |
|
Li F W, Tao R J. Analysis of factors influencing hydrological processes in the Ziya River basin under changing environment. Water Resources Protection, 2023, 39 (5): 9- 17.
doi: 10.3880/j.issn.1004-6933.2023.05.002 |
|
李 赟, 徐 利, 李雅丽, 等. 2023. 首都水源涵养区水环境因子空间变化特征研究——以清水河和白河流域为例. 河北建筑工程学院学报, 41(4): 156−165. | |
Li Y, Xu L, Li Y L, et al. 2023. Study on the spatial variation characteristics of waterenvironment factors in the capital water conservation areas : a case study in the Qingshui River and the Bai River basins. Journal of Hebei Institute of Architecture and Civil Engineering, 41(4): 156−165. [in Chinese] | |
李 卓, 孙然好, 张继超, 等. 京津冀城市群地区植被覆盖动态变化时空分析. 生态学报, 2017, 37 (22): 7418- 7426. | |
Li Z, Sun R H, Zhang J C, et al. Temporal-spatial analysis of vegetation coverage dynamics in Beijing-Tianjin-Hebei metropolitan regions. Acta Ecologica Sinica, 2017, 37 (22): 7418- 7426. | |
蔺星娜, 牛健植, 贾京伟, 等. 张家口清水河上游流域植被指数时空变化特征. 中国水土保持科学, 2018, 16 (1): 123- 130. | |
Lin X N, Niu J Z, Jia J W, et al. Spatial-temporal variation of vegetation in Qingshui River basin, Zhangjiakou. Science of Soil and Water Conservation, 2018, 16 (1): 123- 130. | |
娄淑兰, 刘目兴, 易 军, 等. 三峡山地不同类型植被和坡位对土壤水文功能的影响. 生态学报, 2019, 39 (13): 4844- 4854. | |
Lou S L, Liu M X, Yi J, et al. Influence of vegetation coverage and topographic position on soil hydrological function in the hillslope of the three gorges area. Acta Ecologica Sinica, 2019, 39 (13): 4844- 4854. | |
裴宏伟, 杨 佳, 张红娟, 等. 变化环境下清水河流域径流演变特征及驱动力. 南水北调与水利科技(中英文), 2020, 18 (2): 1- 13. | |
Pei H W, Yang J, Zhang H J, et al. Characteristics and driving factors of runoff evolution for the Qingshui River watershed under changing environment. South-to-North Water Transfers and Water Science& Technology (Chinese and English), 2020, 18 (2): 1- 13. | |
史晓亮, 李 颖, 赵 凯, 等. 诺敏河流域植被覆盖时空演变及其与径流的关系研究. 干旱区资源与环境, 2013, 27 (6): 54- 60. | |
Shi X L, Li Y, Zhao K, et al. Temporal and spatial changes of vegetation cover and the relationship with runoff in Nuomin River basin. Journal of Arid Land Resources and Environment, 2013, 27 (6): 54- 60. | |
石彦琴, 陈源泉, 隋 鹏, 等. 农田土壤紧实的发生、影响及其改良. 生态学杂志, 2010, 29 (10): 2057- 2064. | |
Shi Y Q, Chen Y Q, Sui P, et al. Cropland soil compaction: its casuses influences and improvement. Chinese Journal of Ecology, 2010, 29 (10): 2057- 2064. | |
石智宇, 赵 清, 王雅婷, 等. 沂河流域植被覆盖时空演变及其与径流的关系研究. 水土保持研究, 2023, 30 (1): 54- 61. | |
Shi Z Y, Zhao Q, Wang Y T, et al. Temporal and spatial evolution of vegetation cover and its relationship with runoff in Yihe river basin. Research of Soil and Water Conservation, 2023, 30 (1): 54- 61. | |
索立柱, 黄明斌, 段良霞, 等. 黄土高原不同土地利用类型土壤含水量的地带性与影响因素. 生态学报, 2017, 37 (6): 2045- 2053. | |
Suo L Z, Huang M B, Duan L X, et al. Zonal pattern of soil moisture and its influencing factors under different land use types on the Loess Plateau. Acta Ecologica Sinica, 2017, 37 (6): 2045- 2053. | |
杨 佳. 2020. 变化环境下清水河流域水文过程演变及驱动机制研究. 河北: 河北建筑工程学院. | |
Yang J. 2020. Characteristics and driving factors of runoff evolution for the Qingshui River watershed under changing environment. Hebei: Hebei University of Architecture. [in Chinese] | |
姚美初. 2023. SWAT 模型参数的不确定性分析与优化方法及其在石头口门流域应用. 吉林: 吉林大学. | |
Yao M C. 2023. Uncertainty analysis and optimization method for SWAT model parameters and its application to the Shitoukoumen basin. Jilin: Jilin University. [in Chinese] | |
张步峰, 张 良, 原 彪. 张家口市清水河流域综合治理研究. 河北建筑工程学院学报, 2010, 28 (2): 67- 69.
doi: 10.3969/j.issn.1008-4185.2010.02.022 |
|
Zhang B F, Zhang L, Yuan B. A study on comprehensive harnessing of Qingshui River basin in Zhangjiakou City. Journal of Hebei Institute of Architecture and Civil Engineering, 2010, 28 (2): 67- 69.
doi: 10.3969/j.issn.1008-4185.2010.02.022 |
|
张树磊. 2018. 中国典型流域植被水文相互作用机理及变化规律研究. 北京: 清华大学. | |
Zhang S L. 2018. Explore the interactins between vegetation and hydroligy under a changing environment in Chinese typical basins. Beijing: Tsinghua University. [in Chinese] | |
张永强, 孔冬冬, 张选泽, 等. 2003—2017年植被变化对全球陆面蒸散发的影响. 地理学报, 2021, 76 (3): 584- 594.
doi: 10.11821/dlxb202103007 |
|
Zhang Y Q, Sun D D, Zhang X Z, et al. Impacts of vegetation changes on global evapotranspiration in the period 2003−2017. Acta Geographica Sinice, 2021, 76 (3): 584- 594.
doi: 10.11821/dlxb202103007 |
|
张占贵, 郭 勇, 郭丽峰. 2008. 张家口市水生态环境现状与保护对策. 海河水利, (1): 18−22. | |
Zhang Z G, Guo Y, Guo L F. 2008. Status and countermeasures of water entironment in Zhangjiakou City. Haihe Water Resources, (1): 18−22. [in Chinese] | |
赵 阳, 余新晓, 郑江坤, 等. 气候和土地利用变化对潮白河流域径流变化的定量影响. 农业工程学报, 2012, 28 (22): 252- 260.
doi: 10.3969/j.issn.1002-6819.2012.22.035 |
|
Zhao Y, Yu X X, Zheng J K, et al. Quantitative effects of climate variations and land-use changes on annual streamflow in Chaobai River basin. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28 (22): 252- 260.
doi: 10.3969/j.issn.1002-6819.2012.22.035 |
|
赵宇寒, 曹建生, 朱春雨, 等. 壤中流形成机制及其生态水文效应研究进展. 中国生态农业学报(中英文), 2022, 30 (1): 38- 46.
doi: 10.12357/cjea.20210277 |
|
Zhao Y H, Cao J S, Zhu C Y, et al. Research progress on the formation mechanism of subsurface flow and its eco-hydrological effects. Chinese Journal of Eco-Agriculture (Chinese and English), 2022, 30 (1): 38- 46.
doi: 10.12357/cjea.20210277 |
|
Arnold J G, Allen P M, Volk M, et al. Assessment of different representations of spatial variability on SWAT model performance. Transactions of the ASABE, 2010, 53 (5): 1433- 1443.
doi: 10.13031/2013.34913 |
|
Arnold J G, Moriasi D N, Gassman P W, et al. SWAT: model use, calibration, and validation. Transactions of the ASABE, 2012, 55 (4): 1491- 1508.
doi: 10.13031/2013.42256 |
|
Athira P, Nanda C, Sudheer K P. A computationally efficient method for uncertainty analysis of SWAT model simulations. Stochastic Environmental Research and Risk Assessment, 2018, 32 (6): 1479- 1492.
doi: 10.1007/s00477-018-1538-9 |
|
Chen L D, Huang Z L, Gong J, et al. The effect of land cover/vegetation on soil water dynamic in the hilly area of the Loess Plateau, China. Catena, 2007, 70 (2): 200- 208.
doi: 10.1016/j.catena.2006.08.007 |
|
Katul G G, Oren R, Manzoni S, et al. 2012, Evapotranspiration: a process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Reviews of Geophysics, 50(3): 2011RG000366. | |
Levis S, Foley J A, Pollard D. Large-scale vegetation feedbacks on a doubled CO₂ climate. Journal of Climate, 2000, 13 (7): 1313- 1325.
doi: 10.1175/1520-0442(2000)013<1313:LSVFOA>2.0.CO;2 |
|
Li D H, Liu K, Wang S D, et al. Four decades of hydrological response to vegetation dynamics and anthropogenic factors in the Three-North Region of China and Mongolia. Science of the Total Environment, 2023, 857, 159546.
doi: 10.1016/j.scitotenv.2022.159546 |
|
Lin W P. Monitoring and protection of forest ecological tourism resources by dynamic monitoring system. Ecological Chemistry and Engineering S-chemia I Inzynieria Ekologiczna S, 2019, 26 (1): 189- 197. | |
Lu L H, Xu Y Q, Huang A, et al. Influences of topographic factors on outcomes of forest programs and policies in a mountain region of China: a case study. Mountain Research and Development, 2020, 40 (1): R48- R60. | |
Mango L M, Melesse A M, McClain M E, et al. Land use and climate change impacts on the hydrology of the upper Mara River basin, Kenya: results of a modeling study to support better resource management. Hydrology and Earth System Sciences, 2011, 15 (7): 2245- 2258.
doi: 10.5194/hess-15-2245-2011 |
|
Meng F H, Liu T, Wang H, et al. An alternative approach to overcome the limitation of HRUs in analyzing hydrological processes based on land use/cover change. Water, 2018, 10 (4): 434.
doi: 10.3390/w10040434 |
|
Mengistu A G, Woldesenbet T A, Dile Y T, et al. Modeling impacts of projected land use and climate changes on the water balance in the Baro basin, Ethiopia. Heliyon, 2023, 9 (3): e13965.
doi: 10.1016/j.heliyon.2023.e13965 |
|
Moriasi D N, Arnold J G, Van Liew M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 2007, 50 (3): 885- 900.
doi: 10.13031/2013.23153 |
|
Nie W M, Yuan Y P, Kepner W, et al. Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. Journal of Hydrology, 2011, 407 (1-4): 105- 114.
doi: 10.1016/j.jhydrol.2011.07.012 |
|
Pan T S, Zuo L J, Zhang Z X, et al. Impact of land use change on water conservation: a case study of Zhangjiakou in Yongding River. Sustainability, 2021, 13 (1): 22. | |
Pang J Z, Zhang H L, Xu Q X, et al. Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales. Hydrology and Earth System Sciences, 2020, 24 (7): 3603- 3626.
doi: 10.5194/hess-24-3603-2020 |
|
Pereira D R, Almeida A Q, Martinez M A, et al. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast. Revista Brasileira De Ciência Do Solo, 2014, 38 (4): 1350- 1358. | |
Pereira D R, Martinez M A, Pruski F F, et al. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: calibration and validation tests. Journal of Hydrology: Regional Studies, 2016, 7, 14- 37.
doi: 10.1016/j.ejrh.2016.05.002 |
|
Qubaja R, Amer M, Tatarinov F, et al. Partitioning evapotranspiration and its long-term evolution in a dry pine forest using measurement-based estimates of soil evaporation. Agricultural and Forest Meteorology, 2020, 281, 107831.
doi: 10.1016/j.agrformet.2019.107831 |
|
Song X P, Hansen M C, Stehman S V, et al. Global land change from 1982 to 2016. Nature, 2018, 560, 639- 643.
doi: 10.1038/s41586-018-0411-9 |
|
Sun G, Zhou G Y, Zhang Z Q, et al. Potential water yield reduction due to forestation across China. Journal of Hydrology, 2006, 328 (3): 548- 558. | |
Villarini G, Wasko C. Humans, climate and streamfow. Nature Climate Change, 2021, 11, 725- 726.
doi: 10.1038/s41558-021-01137-z |
|
Wang S P, McVicar T R, Zhang Z Q, et al. Globally partitioning the simultaneous impacts of climate-induced and human-induced changes on catchment streamflow: a review and meta-analysis. Journal of Hydrology, 2020, 590, 125387.
doi: 10.1016/j.jhydrol.2020.125387 |
|
Wei X H, Li Q, Zhang M F, et al. Vegetation cover—another dominant factor in determining global water resources in forested regions. Global Change Biology, 2018, 24 (2): 786- 795.
doi: 10.1111/gcb.13983 |
|
Woldesenbet T A, Elagib N A, Ribbe L, et al. Hydrological responses to land use/cover changes in the source region of the upper Blue Nile basin, Ethiopia. Science of the Total Environment, 2017, 575, 724- 741.
doi: 10.1016/j.scitotenv.2016.09.124 |
|
Yan T Z, Bai J W, Lee Zhi Yi A, et al. SWAT-simulated streamflow responses to climate variability and human activities in the Miyun Reservoir basin by considering streamflow components. Sustainability, 2018, 10 (4): 941.
doi: 10.3390/su10040941 |
|
Yang L S, Feng Q, Yin Z L, et al. Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe river, Northwest China. Hydrological Processes, 2017, 31 (5): 1100- 1112.
doi: 10.1002/hyp.11098 |
|
Yang L, Zhao G J, Tian P, et al. Runoff changes in the major river basins of China and their responses to potential driving forces. Journal of Hydrology, 2022, 607, 127536.
doi: 10.1016/j.jhydrol.2022.127536 |
|
Yang W T, Long D, Bai P. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. Journal of Hydrology, 2019, 570, 201- 219.
doi: 10.1016/j.jhydrol.2018.12.055 |
|
Yin Y Y, Wang L, Wang Z J, et al. 2020. Quantifying water scarcity in Northern China within the context of climatic and societal changes and South‐to‐North Water Diversion. Earth’s Future, 8(8): e2020EF001492. | |
Zeng Z Z, Peng L Q, Piao S L. Response of terrestrial evapotranspiration to Earth’s greening. Current Opinion in Environmental Sustainability, 2018, 33, 9- 25.
doi: 10.1016/j.cosust.2018.03.001 |
|
Zhang L, Nan Z T, Yu W J, et al. Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Science of the Total Environment, 2018, 622-623, 1016- 1028.
doi: 10.1016/j.scitotenv.2017.12.055 |
|
Zhao G J, Mu X M, Tian P, et al. Climate changes and their impacts on water resources in semiarid regions: a case study of the Wei River basin, China. Hydrological Processes, 2013, 27 (26): 3852- 3863.
doi: 10.1002/hyp.9504 |
|
Zhou Y Y, Fu D J, Lu C X, et al. Positive effects of ecological restoration policies on the vegetation dynamics in a typical ecologically vulnerable area of China. Ecological Engineering, 2021, 159, 106087.
doi: 10.1016/j.ecoleng.2020.106087 |
|
Zhu Z C, Piao S L, Myneni R B, et al. Greening of the Earth and its drivers. Nature Climate Change, 2016, 6 (8): 791- 795.
doi: 10.1038/nclimate3004 |
[1] | Yun Huang,Liliang Xu,Bofu Zheng,Xu Song,Fangqing Hu,Jinqi Zhu,Wei Wan. Responses of Productivity and Carbon Use Efficiency of Typical Subtropical Forests to Climate Change [J]. Scientia Silvae Sinicae, 2025, 61(3): 121-134. |
[2] | Yutian Zhang,Junnan Shi,Huaiqing Zhang,Binglun Wu. Spatiotemporal Patterns and Driving Forces of Vegetation Restoration and Degradation in Dongting Lake Wetland [J]. Scientia Silvae Sinicae, 2024, 60(8): 1-13. |
[3] | Jiaojun Zhu,G. Geoff Wang,Huaiqing Zhang,Tian Gao. On the Research of Climate-Smart Forestry [J]. Scientia Silvae Sinicae, 2024, 60(7): 1-7. |
[4] | Zhao Zhuqi, Hu Zhenhong, He Xian, Huang Zhiqun. Research Progresses on the Dynamics of Microbial Community Establishment in Woody Debris [J]. Scientia Silvae Sinicae, 2024, 60(2): 106-117. |
[5] | Jiayan Shen,Zexin Fan,Hui Zhang,Xinhua Peng,Jinhua Li,Xiao Yu,Wenxiong Yang,Yunfang Li,Xinyu Li,Yuening Liu,Jianrong Su. Response Heterogeneity of Radial Growth of the Three Pine Species to Climate Factors in Yunnan Province [J]. Scientia Silvae Sinicae, 2024, 60(11): 48-62. |
[6] | Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios [J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74. |
[7] | Lei Liu,Lijuan Zhao,Jiaqi Liu,Huisheng Zhang,Zhiwei Zhang,Ruifen Huang,Ruihe Gao. Potentially Suitable Distribution Areas of Monochamus alternatus in China under Current and Future Climatic Scenarios Based on Optimized MaxEnt Model [J]. Scientia Silvae Sinicae, 2024, 60(11): 139-148. |
[8] | Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau [J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77. |
[9] | Xuelei Wei,Guogang Zhang,Ru Jia,Yunrui Ji,Hongying Xu,Zeyu Yang,Huajin Liu,Yulin Liu,Peiyu Yang. Variation of Waterbird Diversity and Its Affecting Factors in Xingkai Lake, Heilongjiang Province [J]. Scientia Silvae Sinicae, 2023, 59(6): 118-129. |
[10] | Ya Wang,Junhui Wang,Fude Wang,Yifu Liu,Cancan Tan,Yanchao Yuan,Wen Nie,Jianfeng Liu,Ermei Chang,Zirui Jia. Simulation of Suitable Distribution Areas of Picea koraiensis in China Since the Last Interglacial and Under Future Climate Scenarios [J]. Scientia Silvae Sinicae, 2023, 59(12): 1-12. |
[11] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[12] | Liqing Si,Mingyu Wang,Feng Chen,Lifu Shu,Fengjun Zhao,Weike Li. Distribution Characteristics of Lightning and the Warning of Lightning-Caused Forest Fires [J]. Scientia Silvae Sinicae, 2023, 59(10): 1-8. |
[13] | Aijun Wang,Dongye Lu,Guosheng Zhang,Haiguang Huang,Ying Wang,Sileng Hu,Min Ao. Potential Distribution of Juniperus sabina under Climate Change in Eurasia Continent Based on MaxEnt Model [J]. Scientia Silvae Sinicae, 2021, 57(8): 43-55. |
[14] | Rui Bai,Ning Li,Shaojun Liu,Xiaomin Chen,Haiping Zou,Run Lü. Risk Analysis of White Root Disease on Rubber Trees in China under the Background of Future Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 37-45. |
[15] | Guanghua Zhao,Xinyue Cui,Zhi Wang,Hongli Jing,Baoguo Fan. Prediction of Potential Distribution of Ziziphus jujuba var. spinosa in China under Context of Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 158-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||