Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (2): 172-179.doi: 10.11707/j.1001-7488.LYKX20240229
• Research papers • Previous Articles Next Articles
Xinxin Ma,You Wang,Jiajun Wang,Long Feng,Jianfeng Ma*()
Received:
2024-04-25
Online:
2025-02-25
Published:
2025-03-03
Contact:
Jianfeng Ma
E-mail:Majf@icbr.ac.cn
CLC Number:
Xinxin Ma,You Wang,Jiajun Wang,Long Feng,Jianfeng Ma. Changes in Ash Composition of Bamboo during Pyrolysis and the Distribution Pattern of Silicon Transformation[J]. Scientia Silvae Sinicae, 2025, 61(2): 172-179.
Table 1
Industrial analysis from bamboo charcoal from internode and node"
竹材部位 Bamboo parts | 热解温度 Pyrolysis temperature/℃ | 水分质量分数 Moisture mass fraction(%) | 灰分质量分数 Ash mass fraction(%) | 挥发分质量分数 Volatile matter mass fraction(%) | 固定碳质量分数 Fixed carbon mass fraction(%) |
对照组节间 Control group bamboo internode | 1.86 | 1.33 | 76.24 | 20.57 | |
节间 Internode | 350 | 2.42 | 3.59 | 31.88 | 62.11 |
500 | 2.02 | 4.20 | 13.83 | 79.95 | |
800 | 2.04 | 5.32 | 5.35 | 87.29 | |
1 000 | 2.45 | 4.91 | 3.81 | 88.83 | |
对照组竹节 Control group bamboo node | 1.50 | 0.73 | 78.03 | 19.74 | |
竹节 Node | 350 | 1.36 | 2.94 | 31.07 | 64.63 |
500 | 1.91 | 3.92 | 12.80 | 81.37 | |
800 | 2.75 | 4.33 | 4.29 | 88.63 | |
1 000 | 2.40 | 5.03 | 3.85 | 88.72 |
Table 2
Elemental analysis and aromatic index from bamboo charcoal from internode and node"
竹材部位 Bamboo parts | 热解温度 Pyrolysis temperature/℃ | w(C)(%) | w(H) (%) | w(O) (%) | w(N) (%) | w(H)∶w(C) | w(O)∶w(C) | [w(O)+w(N)]∶w(C) | IA |
对照组节间 Control group bamboo internode | 51.66±0.54 | 5.49±0.41 | 42.48±0.50 | 0.37±0.20 | 1.49±0.12 | 0.72±0.01 | 0.83±0.02 | 0.84 | |
节间 Internode | 350 | 75.22±1.52 | 4.07±0.20 | 20.13±1.62 | 0.57±0.21 | 0.76±0.05 | 0.23±0.02 | 0.28±0.02 | 0.99 |
500 | 84.74±0.75 | 2.12±1.04 | 12.54±1.73 | 0.61±0.21 | 0.35±0.02 | 0.12±0.02 | 0.16±0.02 | 1.01 | |
800 | 88.10±2.02 | 0.55±0.15 | 10.11±2.05 | 1.24±0.27 | 0.09±0.02 | 0.10±0.02 | 0.13±0.02 | 1.03 | |
1 000 | 90.19±1.23 | 0.34±0.13 | 8.55±1.36 | 0.92±0.25 | 0.05±0.02 | 0.08±0.01 | 0.11±0.01 | 1.02 | |
对照组竹节 Control group bamboo node | 51.27±0.49 | 5.98±0.24 | 42.31±0.71 | 0.44±0.23 | 1.63±0.06 | 0.72±0.02 | 0.83±0.02 | 0.82 | |
竹节 Node | 350 | 74.73±1.09 | 4.04±0.29 | 20.58±1.43 | 0.64±0.22 | 0.76±0.05 | 0.24±0.02 | 0.28±0.02 | 0.99 |
500 | 84.92±0.81 | 2.53±0.11 | 11.72±0.95 | 0.84±0.24 | 0.42±0.02 | 0.12±0.01 | 0.15±0.01 | 1.01 | |
800 | 88.19±0.60 | 0.75±0.10 | 9.91±0.58 | 1.15±0.24 | 0.12±0.02 | 0.10±0.01 | 0.13±0.01 | 1.02 | |
1 000 | 89.99±1.08 | 0.23±0.13 | 8.67±1.10 | 1.11±0.19 | 0.04±0.02 | 0.08±0.01 | 0.11±0.01 | 1.02 |
Table 3
XRF analysis of bamboo ash from internode and node at different temperatures"
竹材部位 Bamboo parts | 热解温度 Pyrolysis temperature/℃ | w(CaO) (%) | w(Fe2O3) (%) | w(K2O) (%) | w(MgO) (%) | w(SO3) (%) | w(KCl) (%) | w(P2O5) (%) | w(SiO2) (%) | w(Al2O3) (%) |
对照组节间 Control group bamboo internode | 0.922±0.061 | 0.171±0.027 | 33.605±2.610 | 0.645±0.069 | 6.132±0.483 | 2.170±0.191 | 7.606±0.486 | 41.223±4.084 | 7.247±0.249 | |
节间 Internode | 350 | 1.652±0.201 | 0.508±0.046 | 51.606±4.049 | 1.281±0.143 | 5.446±0.548 | 1.800±0.184 | 7.753±0.510 | 24.055±5.382 | 5.838±0.421 |
500 | 1.772±0.103 | 0.452±0.023 | 57.216±1.361 | 1.419±0.228 | 5.320±0.148 | 3.597±0.075 | 9.003±0.213 | 15.950±2.442 | 4.520±0.332 | |
800 | 1.536±0.154 | 4.545±0.389 | 53.817±2.134 | 1.286±0.053 | 4.557±0.185 | 1.984±0.076 | 8.363±0.154 | 17.106±3.222 | 4.181±0.131 | |
1 000 | 1.181±0.020 | 9.700±0.503 | 42.552±1.131 | 1.341±0.100 | 4.200±0.238 | 1.334±0.077 | 8.499±0.234 | 22.496±2.037 | 4.309±0.240 | |
对照组竹节 Control group bamboo node | 1.475±0.227 | 0.406±0.047 | 22.081±1.821 | 0.790±0.331 | 6.865±0.945 | 1.945±0.289 | 5.831±0.728 | 51.020±5.053 | 9.010±1.116 | |
竹节 Node | 350 | 2.101±0.488 | 0.430±0.066 | 42.795±3.955 | 1.297±0.019 | 6.660±0.678 | 1.997±0.226 | 8.542±0.602 | 29.579±6.175 | 5.835±0.046 |
500 | 2.487±0.246 | 0.608±0.055 | 54.364±2.818 | 1.454±0.128 | 4.429±0.258 | 5.710±0.338 | 6.540±0.195 | 19.105±3.955 | 4.328±0.126 | |
800 | 2.029±0.184 | 6.485±0.566 | 50.535±2.043 | 1.568±0.058 | 4.237±1.161 | 2.850±0.114 | 6.698±0.153 | 17.688±3.318 | 4.019±0.155 | |
1 000 | 2.054±0.101 | 7.784±0.185 | 44.778±0.602 | 1.461±0.116 | 4.283±0.234 | 1.222±0.064 | 7.006±0.165 | 22.577±0.991 | 4.877±0.470 |
Table 4
The effect of pyrolysis temperature on the elemental composition of outer and inner bark"
取样位置 Sampling location | 热解温度 Pyrolysis temperature/℃ | w(C)(%) | w(O) (%) | w(Si) (%) | w(P) (%) | w(K) (%) | w(Ca) (%) |
外表皮Outer skin | 对照组CK | 73.89 | 14.05 | 9.63 | 1.52 | 0.33 | 0.46 |
500 | 35.40 | 30.48 | 30.88 | 1.84 | 1.04 | 0.26 | |
800 | 24.85 | 34.26 | 32.65 | 1.70 | 5.86 | 0.22 | |
1 000 | 21.54 | 35.50 | 24.98 | 2.51 | 13.91 | 0.49 | |
内表皮Inner skin | 对照组CK | 56.74 | 39.41 | 0.05 | 1.20 | 0.94 | 0.75 |
500 | 81.96 | 13.00 | 0.92 | 1.97 | 1.32 | 0.21 | |
800 | 77.57 | 13.10 | 0.15 | 1.64 | 7.34 | 0.15 | |
1 000 | 80.36 | 10.70 | 1.09 | 2.63 | 4.43 | 0.57 |
Table 5
The effect of pyrolysis temperature on the elements relative content in various parts of bamboo"
取样位置 Sampling location | 热解温度 Pyrolysis temperature/℃ | 节间Node | 竹节Internode | |||||||||||
w(C)(%) | w(O) (%) | w(Si) (%) | w(P) (%) | w(K) (%) | w(Ca) (%) | w(C) (%) | w(O) (%) | w(Si) (%) | w(P) (%) | w(K) (%) | w(Ca) (%) | |||
竹青 Bamboo outer part | 对照组CK | 55.83 | 38.34 | 0.49 | 3.22 | 0.94 | 0.11 | 56.84 | 39.97 | 0.43 | 2.07 | 0.36 | 0.18 | |
500 | 77.74 | 13.25 | 0.69 | 4.91 | 2.54 | 0.83 | 85.20 | 9.87 | 1.10 | 2.66 | 0.98 | 0.02 | ||
800 | 75.60 | 12.60 | 0.04 | 1.63 | 9.72 | 0.33 | 90.36 | 5.03 | 0.65 | 2.03 | 1.65 | 0.18 | ||
1 000 | 51.03 | 22.94 | 0.08 | 2.40 | 22.57 | 0.80 | 91.18 | 5.26 | 0.59 | 0.99 | 1.89 | 0.07 | ||
竹肉 Bamboo middle part | 对照组CK | 55.95 | 38.29 | 0.40 | 3.26 | 0.81 | 0.25 | 57.36 | 40.00 | 0.24 | 1.77 | 0.34 | 0.20 | |
500 | 77.77 | 12.51 | 0.70 | 4.29 | 4.34 | 0.19 | 87.58 | 8.63 | 0.22 | 1.87 | 1.42 | 0.17 | ||
800 | 86.20 | 6.96 | — | 1.37 | 5.04 | 0.36 | 90.59 | 4.93 | 0.31 | 2.37 | 1.66 | 0.02 | ||
1 000 | 78.18 | 9.92 | 0.09 | 2.32 | 8.91 | 0.39 | 91.87 | 4.56 | 0.13 | 1.28 | 1.99 | 0.06 | ||
竹黄 Bamboo inner part | 对照组CK | 54.39 | 39.89 | 0.34 | 4.01 | 0.85 | 0.09 | 56.78 | 40.70 | 0.26 | 1.08 | 0.65 | 0.40 | |
500 | 77.44 | 13.59 | 0.60 | 3.80 | 3.96 | 0.33 | 87.70 | 8.28 | 0.32 | 2.24 | 1.29 | 0.07 | ||
800 | 83.48 | 8.05 | 0.09 | 1.70 | 5.95 | 0.67 | 89.23 | 5.61 | 0.45 | 2.65 | 1.84 | 0.04 | ||
1 000 | 79.56 | 9.22 | — | 2.34 | 8.12 | 0.40 | 90.73 | 4.90 | 0.24 | 1.58 | 2.38 | 0.05 |
代琳心, 王智辉, 李振瑞, 等. 基于TG-FTIR的竹材细胞壁主要组分热解特性. 林业科学, 2023, 59 (11): 85- 94.
doi: 10.11707/j.1001-7488.LYKX20220081 |
|
Dai L X, Wang Z H, Li Z R, et al. Pyrolysis characteristics of the main components of bamboo cell wall using TG-FTIR. Scientia Silvae Sinicae, 2023, 59 (11): 85- 94.
doi: 10.11707/j.1001-7488.LYKX20220081 |
|
杜静静, 蒋 军, 黄浩文, 等. 水热或碱预处理协同无机硅矿化竹材性能. 林产工业, 2023, 60 (5): 7- 14, 20. | |
Du J J, Jiang J, Huang H W, et al. Performance of inorganic silica mineralized bamboo with hydrothermal or alkaline pretreatment. China Forest Products Industry, 2023, 60 (5): 7- 14, 20. | |
何 蕊, 邱 坚, 罗 蓓. 六种竹材灰分及二氧化硅含量分析. 世界竹藤通讯, 2016, 14 (4): 1- 4. | |
He R, Qiu J, Luo B. Analysis of ash and silica content of six bamboo species. World Bamboo and Rattan, 2016, 14 (4): 1- 4. | |
刘 冬, 余 雁, 张求慧, 等. 竹炭为模板高温法制备SiC纳微米棒. 新型炭材料, 2011, 26 (6): 435- 440. | |
Liu D, Yu Y, Zhang Q H, et al. Formation of SiC nano-micro rods from silica-sol infiltrated bamboo charcoal through carbothermal reduction. New Carbon Materials, 2011, 26 (6): 435- 440. | |
刘国华, 方 正, 郑 笑, 等. 全国14个竹产区毛竹竹炭理化性质分析. 南京林业大学学报(自然科学版), 2018, 42 (6): 13- 19. | |
Liu G H, Fang Z, Zheng X, et al. The characteristics of bamboo charcoal pyrolyzed from moso bamboo culms in 14 bamboo producing areas in China. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42 (6): 13- 19. | |
邵远超, 田华宇, 王国睿, 等. 刺竹炭灰分含量影响因素及表征研究. 竹子学报, 2022, 41 (4): 26- 34.
doi: 10.12390/jbr2022081 |
|
Shao Y C, Tian H Y, Wang G R, et al. Study on influencing factors and characterization of ash content of Bambusa sinospinosa charcoal. Journal of Bamboo Research, 2022, 41 (4): 26- 34.
doi: 10.12390/jbr2022081 |
|
邵卓平, 黄盛霞, 吴福社, 等. 毛竹节间材与节部材的构造与强度差异研究. 竹子研究汇刊, 2008, 27 (2): 48- 52. | |
Shao Z P, Huang S X, Wu F S, et al. A study on the difference of structure and strength between internodes and nodes of moso bamboo. Journal of Bamboo Research, 2008, 27 (2): 48- 52. | |
詹 卉. 2017.10种丛生竹植硅体形态特征及外源硅对竹苗耐寒性影响. 昆明: 西南林业大学. | |
Zhan H. 2017. The phytolith morphological charateristics of ten sympodial bamboo species and exogenous silicon effect on cold tolerance of their seedlings. Kunming: Southwest Forestry University. [in Chinese] | |
Chen S M, Zhang S C, Gao H L, et al. Mechanically robust bamboo node and its hierarchically fibrous structural design. National Science Review, 2023, 10 (2): 195.
doi: 10.1093/nsr/nwac195 |
|
de Almeida S G C, Tarelho L A C, Hauschild T, et al. Biochar production from sugarcane biomass using slow pyrolysis: Characterization of the solid fraction. Chemical Engineering and Processing - Process Intensification, 2022, 179, 109054. | |
Grafmüller J, Böhm A, Zhuang Y L, et al. Wood ash as an additive in biomass pyrolysis: effects on biochar yield, properties, and agricultural performance. ACS Sustainable Chemistry & Engineering, 2022, 10 (8): 2720- 2729. | |
Harvey O R, Kuo L J, Zimmerman A R, et al. An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environmental Science & Technology, 2012, 46 (3): 1415- 1421. | |
He L, Chen L, Shao H J, et al. Microstructure and physicochemical properties of the anisotropic moso bamboo (Phyllostachys pubescens) surface. European Journal of Wood and Wood Products, 2022, 80 (2): 277- 288. | |
Liu Z J, Zhang T, Zhang J, et al. Ash fusion characteristics of bamboo, wood and coal. Energy, 2018, 161, 517- 522.
doi: 10.1016/j.energy.2018.07.131 |
|
Lux A, Luxová M, Abe J, et al. Silicification of bamboo (Phyllostachys heterocycla Mitf. ) root and leaf. Plant and Soil, 2003, 255 (1): 85- 91.
doi: 10.1023/A:1026157424794 |
|
Lyu H H, Zhang Q R, Shen B X. Application of biochar and its composites in catalysis. Chemosphere, 2020, 240, 124842. | |
Nan H Y, Yin J X, Yang F, et al. Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration. Environmental Pollution, 2021, 287, 117566.
doi: 10.1016/j.envpol.2021.117566 |
|
Oglou R C, Gokce Y, Yagmur E, et al. Highly stable Megalopolis lignite based N and S self-doped hierarchically porous activated carbons for high performance supercapacitors and ash content effects on performance. Journal of Energy Storage, 2022, 46, 103817. | |
Perry C C, Lu Y. 1992. Preparation of silicas from silicon complexes: role of cellulose in polymerisation and aggregation control. Journal of the Chemical Society, Faraday Transactions, 88(19): 2915−2921. | |
Pham C D, Dang M D T, Ly T B, et al. A review of the extraction methods and advanced applications of lignin-silica hybrids derived from natural sources. International Journal of Biological Macromolecules, 2023, 230, 123175.
doi: 10.1016/j.ijbiomac.2023.123175 |
|
Sethy N K, Arif Z, Mishra P K, et al. Synthesis of SiO2 nanoparticle from bamboo leaf and its incorporation in PDMS membrane to enhance its separation properties. Journal of Polymer Engineering, 2019, 39 (7): 679- 687.
doi: 10.1515/polyeng-2019-0120 |
|
Wang T, Zhong Y D, Wang C, et al. A low capital method for silicon interference in bamboo kraft pulping alkaline recovery system. Journal of Cleaner Production, 2021, 315, 128283.
doi: 10.1016/j.jclepro.2021.128283 |
|
Xiao X, Chen B L, Zhu L Z. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environmental Science & Technology, 2014, 48 (6): 3411- 3419. | |
Xu R, He H L, Guo H J, et al. Characteristics of silicon and phytolith distribution in bamboo (Ferrocalamus strictus): variations between different organs and ages. Review of Palaeobotany and Palynology, 2023, 311, 104817.
doi: 10.1016/j.revpalbo.2022.104817 |
|
Xu Z B, He M J, Xu X Y, et al. Impacts of different activation processes on the carbon stability of biochar for oxidation resistance. Bioresource Technology, 2021, 338, 125555.
doi: 10.1016/j.biortech.2021.125555 |
|
Zhang X X, Zhang P Z, Yuan X R, et al. Effect of pyrolysis temperature and correlation analysis on the yield and physicochemical properties of crop residue biochar. Bioresource Technology, 2020, 296, 122318.
doi: 10.1016/j.biortech.2019.122318 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||