|  | 安晓静. 2013.竹子的多尺度拉伸力学行为及其强韧机制.北京:中国林业科学研究院硕士学位论文. | 
																													
																							|  | An X J. 2013. Multi-scale tensile mechanical behavior and toughening mechanism for bamboo. Beijing: MS thesis of Chinese Academy of Forestry.[in Chinese] | 
																													
																							|  | 费本华, 陈美玲, 王戈, 等.  竹缠绕技术在国民经济发展中的地位与作用. 世界竹藤通讯, 2018. 16 (4): 1- 4. | 
																													
																							|  | Fei B H ,  Chen M L ,  Wang G , et al.  Status and role of bamboo winding technology in National development. World Bamboo and Rattan, 2018. 16 (4): 1- 4. | 
																													
																							|  | 黄盛霞. 2007.竹材的构造与力学行为的关系.合肥:安徽农业大学硕士学位论文. | 
																													
																							|  | Huang S X. 2007.The relation between structural properties and mechanical behavior of bamboo. Hefei: MS thesis of Anhui Agricultural University.[in Chinese] | 
																													
																							|  | 邵卓平. 2009.木材和竹材的断裂与损伤.合肥:安徽农业大学博士学位论文. | 
																													
																							|  | Shao Z P. 2009. Fracture and damage of wood and bamboo. Hefei: PhD thesis of Anhui Agricultural University.[in Chinese] | 
																													
																							|  | 孙光瑞.  刨花板板坯预压回弹率的研究. 木材工业, 1997. 11 (6): 8- 11. | 
																													
																							|  | Sun G R .  Study on spring-back of particleboard mat after prepressing. China Wood Industry, 1997. 11 (6): 8- 11. | 
																													
																							|  | 田根林, 江泽慧, 余雁, 等.  利用扫描电镜原位拉伸研究竹材增韧机制. 北京林业大学学报, 2012. 34 (5): 144- 147. | 
																													
																							|  | Tian G L ,  Jiang Z H ,  Yu Y , et al.  Toughness mechanism of bamboo by in-situ tension. Journal of Beijing Forestry University, 2012. 34 (5): 144- 147. | 
																													
																							|  | Chen M L ,  Fei B H .  In-situ observation on the morphological behavior of bamboo under flexural stress with respect to its fiber-foam composite structure. Bioresources, 2018. 13 (3): 5472- 5478. | 
																													
																							|  | Chen M L ,  Ye L ,  Wang G , et al.  Fracture modes of bamboo fiber bundles in three-point bending. Cellulose, 2019. 26 (13/14): 8101- 8108. | 
																													
																							|  | Dixon P G, Gibson L J. 2014. The structure and mechanics of moso bamboo material. Journal of the Royal Society Interface, https: //doi.org/10.1098/rsif.2014.0321. | 
																													
																							|  | Dixon P G ,  Ahvenainen P ,  Aijazi A N , et al.  Comparison of the structure and flexural properties of Moso, Guadua and Tre Gai bamboo. Construction & Building Materials, 2015. 90 (12): 11- 17. | 
																													
																							|  | Fang C H ,  Jiang Z H ,  Sun Z J , et al.  An overview on bamboo culm flattening. Construction and Building Materials, 2018. 171, 65- 74. doi: 10.1016/j.conbuildmat.2018.03.085
 | 
																													
																							|  | Habibi M K ,  Samaei A T ,  Gheshlaghi B , et al.  Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure:underlying mechanisms. Acta Biomater, 2015. 16, 178- 186. doi: 10.1016/j.actbio.2015.01.038
 | 
																													
																							|  | Liu H R ,  Wang X Q ,  Zhang X B , et al.  In situ detection of the fracture behaviour of moso bamboo (Phyllostachys pubescens) by scanning electron microscopy. Holzforschung, 2016. 70 (12): 1183- 1190. doi: 10.1515/hf-2016-0003
 | 
																													
																							|  | Low I M ,  Che Z Y ,  Latella B A .  Mapping the structure, composition and mechanical properties of bamboo. Materials Science & Engineering C, 2006. 28 (8): 1969- 1976. | 
																													
																							|  | Lü H ,  Chen X ,  Liu X , et al.  The vacuum-assisted microwave drying of round bamboos:drying kinetics, color and mechanical property. Materials Letters, 2018. 223, 159- 162. doi: 10.1016/j.matlet.2018.04.038
 | 
																													
																							|  | Lü H F ,  Ma X X ,  Zhang B , et al.  Microwave-vacuum drying of round bamboo:a study of the physical properties. Construction and Building Materials, 2019. 211, 44- 51. doi: 10.1016/j.conbuildmat.2019.03.221
 | 
																													
																							|  | Nogata F ,  Takahashi H .  Intelligent functionally graded material:bamboo. Composites Engineering, 1995. 5, 743- 751. doi: 10.1016/0961-9526(95)00037-N
 | 
																													
																							|  | Obataya E ,  Kitin P ,  Yamauchi H .  Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure. Wood Science and Technology, 2007. 41 (5): 385- 400. doi: 10.1007/s00226-007-0127-8
 | 
																													
																							|  | Wang F ,  Shao Z ,  Wu Y .  Mode Ⅱ interlaminar fracture properties of Moso bamboo. Composites Part B Engineering, 2013. 44 (1): 242- 247. doi: 10.1016/j.compositesb.2012.05.035
 | 
																													
																							|  | Wang F ,  Shao Z ,  Wu Y , et al.  The toughness contribution of bamboo node to the Mode I interlaminar fracture toughness of bamboo. Wood Science & Technology, 2014. 48 (6): 1257- 1268. |