Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (7): 83-93.doi: 10.11707/j.1001-7488.LYKX20250196
• Reviews • Previous Articles
Feiran Chen1,2,3,Zijie Zhang2,Shengzuo Fang1,2,3,*()
Received:
2025-04-03
Accepted:
2025-06-20
Online:
2025-07-20
Published:
2025-07-25
Contact:
Shengzuo Fang
E-mail:fangsz@njfu.edu.cn
CLC Number:
Feiran Chen,Zijie Zhang,Shengzuo Fang. Recent Advances in Nanomaterials Enhancing Plant Stress Resistance and Their Application Prospects in Forestry[J]. Scientia Silvae Sinicae, 2025, 61(7): 83-93.
杜仲阳, 杨 泽, 梁梦静, 等. 纳米硒(SeNPs)缓解烟草幼苗铅胁迫和促生效应. 生物技术通报, 2024, 40 (7): 183- 196. | |
Du Z Y, Yang Z, Liang M J, et al. Effect of nano-selenium(SeNPs)in alleviating lead stress and promoting growth of tobacco seedlings. Biotechnology Bulletin, 2024, 40 (7): 183- 196. | |
孙 敏, 郝 毅, 许鑫鑫, 等. 工程纳米材料抵抗作物病害的研究进展. 生态与农村环境学报, 2024, 40 (2): 157- 167. | |
Sun M, Hao Y, Xu X X, et al. Research progress of engineered nanomaterials against crop diseases. Journal of Ecology and Rural Environment, 2024, 40 (2): 157- 167. | |
汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响. 植物生理学报, 2019, 53 (6): 933- 942. | |
Wang Y J, Chen R Y, Liu H C, et al. Applications of nanomaterials in agriculture and its effects on the growth and development of plants. Plant Physiology Journal, 2019, 53 (6): 933- 942. | |
朱立祺, 陈菲然, 陶梦娜, 等. 人工纳米材料增强植物耐盐性的机理研究. 环境科学研究, 2022, 35 (8): 1759- 1768. | |
Zhu L Q, Chen F R, Tao M N, et al. Mechanisms of plant salt tolerance promoted by nanomaterials. Research of Environmental Sciences, 2022, 35 (8): 1759- 1768. | |
Borgatta J, Shen Y, Tamez C, et al. Influence of CuO nanoparticle aspect ratio and surface charge on disease suppression in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 2023, 71 (25): 9644- 9655.
doi: 10.1021/acs.jafc.2c09153 |
|
Cao X, Chen X, Liu E, et al. Metalloid nanomaterials alleviate arsenic phytotoxicity and grain accumulation in rice: mechanisms of abiotic stress tolerance and rhizosphere behavior. Environmental Science & Technology, 2025, 59, 6049- 6060. | |
Cao Z, Ma X, Lv D, et al. Synthesis of chitin nanocrystals supported Zn2+ with high activity against tobacco mosaic virus. International Journal of Biological Macromolecules, 2023a, 250, 12616. | |
Cao X, Chen X, Liu Y, et al. Lanthanum silicate nanomaterials enhance sheath blight resistance in rice: mechanisms of action and soil health evaluation. ACS Nano, 2023b, 17 (16): 15821- 15835.
doi: 10.1021/acsnano.3c03701 |
|
Chen L, Peng Y, Zhu L, et al. CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system. Chemosphere, 2022a, 299, 134474.
doi: 10.1016/j.chemosphere.2022.134474 |
|
Chen F, Zhu L, Tang J, et al. Nanomaterial-modulated cellular sodium extrusion and vacuolar sequestration for salt tolerance. Environmental Science: Nano, 2022b, 9, 4018- 4026.
doi: 10.1039/D2EN00623E |
|
Cheng B, Ding Z, Yue L, et al. Carbon dots enhanced cold tolerance of lettuce (Lactuca sativa L.): scavenging reactive oxygen species, modulating hormones and up-regulating gene expression. Environmental Science: Nano, 2023, 10 (10): 2849- 2860.
doi: 10.1039/D3EN00257H |
|
Chen X, Xia Q, Wang Z, et al. Effects of foliar dressing with chemical nano-selenium and Na2SeO3 on the antioxidant system and accumulation of Se and bioactive components in Cyclocarya paliurus (Sweet Tea Tree). International Journal of Molecular Sciences, 2024, 25 (13): 7433.
doi: 10.3390/ijms25137433 |
|
Choudhary R C, Kumaraswamy R V, Kumari S, et al. Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L. ). Scientific Reports, 2017, 7, 9754.
doi: 10.1038/s41598-017-08571-0 |
|
Dimkpa C O, Singh U, Bindraban P S, et al. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Science of the Total Environment, 2019, 688, 926- 934.
doi: 10.1016/j.scitotenv.2019.06.392 |
|
Ding Y, Xiao Z, Chen F, Yue L, et al. A mesoporous silica nanocarrier pesticide delivery system for loading acetamiprid: effectively manage aphids and reduce plant pesticide residue. Science of the Total Environment, 2023, 863, 160900.
doi: 10.1016/j.scitotenv.2022.160900 |
|
Memari-Tabrizi EF, Yousefpour-Dokhanieh A, Babashpour-Asl M, 2021. Foliar-applied silicon nanoparticles mitigate cadmium stress through physio-chemical changes to improve growth, antioxidant capacity, and essential oil profile of summer savory (Satureja hortensis L. ). Plant Physiology and Biochemistry, 165: 71–79. | |
Gohari G, Panahirad S, Sepehri N, et al. Enhanced tolerance to salinity stress in grapevine plants through application of carbon quantum dots functionalized by proline. Environmental Science and Pollution Research, 2021, 28, 42877- 42890.
doi: 10.1007/s11356-021-13794-w |
|
GomesD G, Sanada K, Pieretti J C, et al. Nanoencapsulation boosts the copper-induced defense responses of a susceptible Coffea arabica cultivar against Hemileia vastatrix. Antibiotics, 2023, 12, 249.
doi: 10.3390/antibiotics12020249 |
|
Goyal V, Rani D, Ritika Mehrotra S, et al. Unlocking the potential of nano-enabled precision agriculture for efficient and sustainable farming. Plants, 2023, 12, 3744.
doi: 10.3390/plants12213744 |
|
Javan M, Selahvarzi Y, Sayyad-Amin P, et al. Potential application of TiO2 nanoparticles to improve the nutritional quality of strawberry cv. Camarosa under drought stress. Scientia Horticulturae, 2024, 330, 113055.
doi: 10.1016/j.scienta.2024.113055 |
|
Ji Y, Yue L, Cao X, et al. Carbon dots promoted soybean photosynthesis and amino acid biosynthesis under drought stress: reactive oxygen species scavenging and nitrogen metabolism. Science of the Total Environment, 2023, 856, 159125.
doi: 10.1016/j.scitotenv.2022.159125 |
|
Liao H, Wang J, Chen F, et al. Salicylic acid functionalized chitosan nanocomposite increases bioactive components and insect resistance of Agastache rugosa. Pesticide Biochemistry and Physiology, 2024, 205, 106131.
doi: 10.1016/j.pestbp.2024.106131 |
|
Liao Y Y, Pereira J, Huang Z, et al. Potential of novel magnesium nanomaterials to manage bacterial spot disease of tomato in greenhouse and field conditions. Plants, 2023, 12, 1832.
doi: 10.3390/plants12091832 |
|
Liu J, Gu J, Hu J, et al. Use of Mn3O4 nanozyme to improve cotton salt tolerance. Plant Biotechnology Journal, 2023, 21 (10): 1935- 1937.
doi: 10.1111/pbi.14145 |
|
Liu Y, Cao X, Yue L, et al. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: reactive oxygen species homeostasis and rhizobacteria regulation. Environmental Pollution, 2022, 299, 118900.
doi: 10.1016/j.envpol.2022.118900 |
|
Li Z, Zhu L, Zhao F, et al. 2022. Plant salinity stress response and nano-enabled plant salt tolerance. Frontiers in Plant Science. 13: 843994. | |
Lu L, Huang M, Huang Y, et al. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science: Nano, 2020, 7 (6): 1692- 1703.
doi: 10.1039/D0EN00214C |
|
Malandrakis A A, Kavroulakis N, Chrysikopoulos C V. 2022. Metal nanoparticles against fungicide resistance: alternatives or partners? Pest Management Science, 78(10): 3953–3956. | |
Mariyam S, Upadhyay S K, Chakraborty K, et al. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-a review. Science of the Total Environment, 2024, 912, 169097.
doi: 10.1016/j.scitotenv.2023.169097 |
|
Noor R, Yasmin H, Ilyas N, et al. Comparative analysis of iron oxide nanoparticles synthesized from ginger (Zingiber officinale) and cumin seeds (Cuminum cyminum) to induce resistance in wheat against drought stress. Chemosphere, 2022, 292, 133201.
doi: 10.1016/j.chemosphere.2021.133201 |
|
Panahirad S, Dadpour M, Gohari G, et al. Putrescine-functionalized carbon quantum dot (put-CQD) nanoparticle: a promising stress-protecting agent against cadmium stress in grapevine (Vitis vinifera cv. Sultana). Plant Physiology and Biochemistry, 2023, 197, 107653.
doi: 10.1016/j.plaphy.2023.107653 |
|
Potter M, Deakin J, Cartwright A, et al. Absence of nanoparticle-induced drought tolerance in nutrient sufficient wheat seedlings. Environmental Science and Technology, 2021, 55 (20): 13541- 13550.
doi: 10.1021/acs.est.1c00453 |
|
Pulizzi F. Nano in the future of crops. Nature Nanotechnology, 2019, 14 (6): 507- 507.
doi: 10.1038/s41565-019-0475-1 |
|
Qi J, Li Y, Yao X, et al. Rational design of ROS scavenging and fluorescent gold nanoparticles to deliver siRNA to improve plant resistance to Pseudomonas syringae. Journal of Nanobiotechnology, 2024, 22, 446.
doi: 10.1186/s12951-024-02733-9 |
|
Rossi L, Zhang W, Ma X. Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environmental Pollution, 2017, 229, 132- 138.
doi: 10.1016/j.envpol.2017.05.083 |
|
Sarkar R D, Kalita M C. Green synthesized Se nanoparticle-mediated alleviation of salt stress in field mustard, TS-36 variety. Journal of Biotechnology, 2022, 359, 95- 107.
doi: 10.1016/j.jbiotec.2022.09.013 |
|
Sarraf M, Vishwakarma K, Kumar V, et al. Metal/metalloid-based nanomaterials for plant abiotic stress tolerance: an overview of the mechanisms. Plants, 2022, 11, 316.
doi: 10.3390/plants11030316 |
|
Shen Y, Borgatta J, Ma C, et al. Copper nanomaterial morphology and composition control foliar transfer through the cuticle and mediate resistance to root fungal disease in tomato (Solanum lycopersicum). Journal of Agricultural and Food Chemistry, 2020, 68 (41): 11327- 11338.
doi: 10.1021/acs.jafc.0c04546 |
|
Shen M, Liu S, Jiang C, et al. Recent advances in stimuli-response mechanisms of nano-enabled controlled-release fertilizers and pesticides. Eco-Environment & Health, 2023, 2, 161- 175. | |
Singh A, Rajput V D, Lalotra S, et al. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. Environmental Geochemistry and Health, 2024, 46, 148.
doi: 10.1007/s10653-024-01921-8 |
|
Singh A, Rajput V D, Sharma R, et al. Salinity stress and nanoparticles: insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, 2023, 235, 116585.
doi: 10.1016/j.envres.2023.116585 |
|
Singh P, Arif Y, Siddiqui H, et al. Nanoparticles enhances the salinity toxicity tolerance in Linum usitatissimum L. by modulating the antioxidative enzymes, photosynthetic efficiency, redox status and cellular damage. Ecotoxicology and Environmental Safety, 2021a, 213, 112020.
doi: 10.1016/j.ecoenv.2021.112020 |
|
Singh D, Sillu D, Kumar A, et al. Dual nanozyme characteristics of iron oxide nanoparticles alleviate salinity stress and promote the growth of an agroforestry tree, Eucalyptus tereticornis Sm. Environmental Science: Nano, 2021b, 8 (5): 1308- 1325.
doi: 10.1039/D1EN00040C |
|
Wang C, Ji Y, Cao X, et al. Carbon dots improve nitrogen bioavailability to promote the growth and nutritional quality of soybeans under drought stress. ACS Nano, 2022a, 16 (8): 12415- 12424.
doi: 10.1021/acsnano.2c03591 |
|
Wang C, Yang H, Yue L, et al. Physiological and molecular level understanding of advanced carbon dots to enhance maize drought tolerance: modulation of photosynthesis and signaling molecules. Environmental Science: Nano, 2022b, 9 (10): 3821- 3832.
doi: 10.1039/D2EN00176D |
|
Wang C, Yao Y, Yue L, et al. Regulation mechanisms of nitrogen-doped carbon dots in enhanced maize photosynthesis under drought stress. ACS Agricultural Science and Technology, 2023a, 3 (2): 181- 189.
doi: 10.1021/acsagscitech.2c00286 |
|
Wang J, Cao X, Wang C, et al. Transcriptomics and metabolomics reveal the mechanisms of enhanced constitutive resistance in rice (Oryza Sativa L. ) by silica nanomaterials. Environmental Science: Nano, 2023b, 10 (10): 2831- 2848.
doi: 10.1039/D3EN00504F |
|
Wang X, Xie H, Wang Z, et al. Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environmental Science: Nano, 2019, 6 (1): 75- 84.
doi: 10.1039/C8EN00902C |
|
Wang Z, Zhu W, Chen F, et al. Nanosilicon enhances maize resistance against oriental armyworm (Mythimna separata) by activating the biosynthesis of chemical defenses. Science of the Total Environment, 2021, 778, 146378.
doi: 10.1016/j.scitotenv.2021.146378 |
|
Wu H, Li Z. Recent advances in nano-enabled agriculture for improving plant performance. The Crop Journal, 2022, 10, 1- 12.
doi: 10.1016/j.cj.2021.06.002 |
|
Wu H, Tito N, Giraldo J P. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano, 2017, 11 (11): 11283- 11297.
doi: 10.1021/acsnano.7b05723 |
|
Xiao Z, Zhao C, Fan N, et al. Boosting rice resilience: role of biogenic nanosilica in reducing arsenic toxicity and defending against herbivore. Environmental Science & Technology, 2025, 59, 408- 418. | |
Yang H, Wang C, Chen F, et al. Foliar carbon dot amendment modulates carbohydrate metabolism, rhizospheric properties and drought tolerance in maize seedling. Science of the Total Environment, 2022, 809, 151105.
doi: 10.1016/j.scitotenv.2021.151105 |
|
Yoon H Y, Lee J G, Esposti L D, et al. Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: toward a multifunctional nanofertilizer. ACS Omega, 2020, 5 (12): 6598- 6610.
doi: 10.1021/acsomega.9b04354 |
|
Yue L, Xie B, Cao X, et al. The mechanism of manganese ferrite nanomaterials promoting drought resistance in rice. Nanomaterials, 2023, 13, 1484.
doi: 10.3390/nano13091484 |
|
Zafar S, Hasnain Z, Danish S, et al. Modulations of wheat growth by selenium nanoparticles under salinity stress. BMC Plant Biology, 2024, 24, 35.
doi: 10.1186/s12870-024-04720-6 |
|
Zahedi S M, Abolhassani M, Hadian-Deljou M, et al. Proline-functionalized graphene oxide nanoparticles (GO-Pro NPs): a new engineered nanoparticle to ameliorate salinity stress on grape (Vitis vinifera L. cv Sultana). Plant Stress, 2023, 7, 100128.
doi: 10.1016/j.stress.2022.100128 |
|
Zhang Z, Fang J, Jin H, et al. Application of oxide nanoparticles mitigates the salt-induced effects on photosynthesis and reduces salt injury in Cyclocarya paliurus. Science of the Total Environment, 2024a, 954, 176333.
doi: 10.1016/j.scitotenv.2024.176333 |
|
Zhang Z, Jin H, Fang J, et al. Effects of nanoparticle application on Cyclocarya paliurus growth: mechanisms underlying the particle- and dose-dependent response. Industrial Crops and Products, 2024b, 209, 117942.
doi: 10.1016/j.indcrop.2023.117942 |
|
Zhang X, Li X, Chen F, et al. Selenium nanomaterials enhance the nutrients and functional components of Fuding Dabai tea. Nanomaterials, 2024c, 14, 681.
doi: 10.3390/nano14080681 |
|
Zhao L, Lu L, Wang A, et al. Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. Journal of Agricultural Food Chemistry, 2020, 68 (7): 1935- 1947.
doi: 10.1021/acs.jafc.9b06615 |
|
Zhou H, Wu H, Zhang F, et al. Molecular basis of cerium oxide nanoparticle enhancement of rice salt tolerance and yield. Environmental Science: Nano, 2021, 8 (11): 3294- 3311.
doi: 10.1039/D1EN00390A |
|
Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry, 2021, 160, 257- 268.
doi: 10.1016/j.plaphy.2021.01.028 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||