刘 鸣, 乌尔里希·皮特扎卡, 安德烈亚斯·罗洛夫, 等. 2023. 不同生境中多树种生长对干旱胁迫的敏感性评价: 以德国萨克森州为例. 林业科学, 59(11): 12-22. Liu M, Ulrich Pietschka, Andreas Roloff, et al. 2023. Evaluation of the sensitivity of multiple tree species to drought stress in different habitats: a case study from Saxony, Germany. Scientia Silvae Sinicae, 59(11): 12-22. [in Chinese] 毛英伍, 郭 颖, 张王菲, 等. 2023. 联合LiDAR、高光谱数据及3D-CNN方法的树种分类. 林业科学, 59(3): 73-83. Mao Y W, Guo Y, Zhang W F, et al. 2023. Tree species classification using LiDAR, hyperspectral data, and 3D-CNN methods. Scientia Silvae Sinicae, 59(3): 73-83. [in Chinese] 苏佳杰, 张哲宇, 徐嘉俊, 等. 2023. 基于深度双线性转换注意力机制网络的林业有害生物识别方法. 林业科学, 59(2): 121-128. Su J J, Zhang Z Y, Xu J J, et al. 2023. Forest pest identification method based on a deep bilinear transformation attention mechanism network. Scientia Silvae Sinicae, 59(2): 121-128. [in Chinese] 苏 彤, 许 杰. 2024. 基于生成对抗网络的树种识别方法. 林业科学, 60(2): 97-105. Su T, Xu J. 2024. Tree species identification method based on generative adversarial network. Scientia Silvae Sinicae, 60(2): 97-105[in Chinese]). Bazi Y, Bashmal L, Al Rahhal M M, et al. 2021. Vision transformers for remote sensing image classification. Remote Sensing, 13(3): 516-535. Chen J N, Mei J R, Li X H, et al. 2024. TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers. Medical Image Analysis, 97: 103280. Fu J, Liu J, Tian H J, et al. 2019. Dual attention network for scene segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 3141-3149. Hu J, Shen L, Sun G. 2018. Squeeze-and-excitation networks. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7132-7141. Guo X Q, Yang C, Li B P, et al. 2021. MetaCorrection: domain-aware meta loss correction for unsupervised domain adaptation in semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 3927-3936. He H Q, Zhou F Y, Xia Y P, et al. 2023. Parallel fusion neural network considering local and global semantic information for Citrus tree canopy segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17: 1535-1549. Iizuka R, Xia J, Yokoya N. 2022. Frequency-based optimal style mix for domain generalization in semantic segmentation of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60(2): 1-15. Jadon S. 2020. A survey of loss functions for semantic segmentation. Proceedings of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 1-7. Liang C, Dong Y, Li W, et al. 2024. Single domain generalization method for remote sensing image segmentation via category consistency on domain randomization. IEEE Transactions on Geoscience and Remote Sensing, 62: 1-16. Li R, Zheng S Y, Zhang C, et al. 2021a. ABCNet: Attentive bilateral contextual network for efficient semantic segmentation of Fine-Resolution remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 181: 84-98. Li R, Zheng S Y, Zhang C, et al. 2021b. Multi-attention network for semantic segmentation of fine-resolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 60: 1-13. Liu Z, Lin Y, Cao Y, et al. 2021. Swin transformer: hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012-10022. Luo H J, Ming D, Xu L, et al. 2023. Tree species classification based on ASDER and MALSTM-FCN. Remote Sensing, 15: 1723. Ronneberger O, Fischer P, Brox T. 2015. U-Net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer International Publishing, 234-241. Saporta A, Vu T H, Cord M, et al. 2021. Multi-target adversarial frameworks for domain adaptation in semantic segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision, 9072-9081. Shen Z R, Zhang M Y, Zhao H Y, et al. 2021. Efficient attention: attention with linear complexities. Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), 3530-3538. Singha M, Jha A, Bose S, et al. 2024. Unknown prompt, the only Lacuna: unveiling CLIP’s potential for open domain generalization. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13309-13319. Sultana M, Khan MH, Naseer M, et al. 2022. Self-distilled vision transformer for domain generalization. Proceedings of the Asian Conference on Computer Vision, 3068-3085. Wang L B, Li R, Zhang C, et al. 2022. UNetFormer: a UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 190: 196-214. Xu X, Cao C, Feng Z, et al. 2021. An improved Swin transformer-based model for remote sensing object detection and instance segmentation. Remote Sensing, 13(23): 4779-4798. Zhu Z, Xu M, Bai S, et al. 2019. Asymmetric non-local neural networks for semantic segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision, 593-602.
|