Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (10): 60-73.doi: 10.11707/j.1001-7488.LYKX20250161
• Research papers • Previous Articles
Aoli Suo1,2,Feng Chen1,2,3,Junwei Gong1,2,Dingye Cheng1,2,Shi’ao Dai1,2,Chenggong Ma4,Xiaodong Liu1,2,*(
)
Received:2025-03-22
Online:2025-10-25
Published:2025-11-05
Contact:
Xiaodong Liu
E-mail:xd_liu@bjfu.edu.cn
CLC Number:
Aoli Suo,Feng Chen,Junwei Gong,Dingye Cheng,Shi’ao Dai,Chenggong Ma,Xiaodong Liu. Response of Surface Fuel Characteristics, Soil Physicochemical Properties, and Understory Plant Diversity to Forest Grassland Grazing in Larix gmelinii var. principis-rupprechtii and Pinus tabuliformis Forests[J]. Scientia Silvae Sinicae, 2025, 61(10): 60-73.
Table 1
Basic characteristics of the sample plots"
| 林分类型 Forest stand type | 处理Treatment | 统计Statistic | 变量Variable | ||||||
| 海拔 Elevation/m | 坡度 Slope/(°) | 林分密度 Stand density/ (trees?hm?2) | 胸径 DBH/cm | 胸高断面积 Basal area/ (m2?hm?2) | 林分高度 Stand height/m | 郁闭度 Canopy density | |||
| 华北落叶松林 Larix gmelinii var. principis-rupprechtii forest | 禁牧Ungrazed 41.726 049°N 118.218 230°E | 平均值Mean | 1 242.7b | 13.67a | 1 085a | 19.13a | 127.82a | 14.0a | 0.50a |
| 标准Standard deviation | 0.8 | 0.58 | 36 | 0.45 | 7.58 | 0.4 | 0.05 | ||
| 放牧Grazed 41.725 535°N 118.218 918°E | 平均值Mean | 1 255.2a | 15.00a | 1 042a | 19.50a | 126.61a | 13.9a | 0.40a | |
| 标准Standard deviation | 3.2 | 1.00 | 63 | 0.36 | 4.52 | 0.2 | 0.05 | ||
| 油松林 Pinus tabuliformis forest | 禁牧Ungrazed 41.723 998°N 118.205 965°E | 平均值Mean | 1 349.5b | 12.00a | 648a | 29.90a | 191.54a | 14.7b | 0.42a |
| 标准Standard deviation | 18.6 | 2.65 | 25 | 0.53 | 14.81 | 0.4 | 0.03 | ||
| 放牧Grazed 41.723 742°N 118.204 803°E | 平均值Mean | 1 501.0a | 11.33a | 592a | 29.73a | 176.56a | 16.2a | 0.40a | |
| 标准Standard deviation | 4.8 | 2.31 | 38 | 0.12 | 9.62 | 0.1 | 0.00 | ||
Table 2
Changes in potential surface fire behavior under different wind speed scenarios"
| 林分类型Forest stand type | 处理 Treatment | 统计Statistic | 第50百分位数 50th percentile (16 km?h?1) | 第97百分位数 97th percentile (27 km?h?1) | |||||
| 地表火蔓延速率Surface fire rate of spread/ (m?min?1) | 地表火火线强度Surface fireline intensity/ (kW?m?1) | 地表火火焰长度Surface fire flame length/m | 地表火蔓延速率Surface fire rate of spread/ (m?min?1) | 地表火火线强度Surface fireline intensity/ (kW?m?1) | 地表火火焰长度Surface fire flame length/m | ||||
| 华北落叶 松林 Larix gmelinii var. principis-rupprechtii forest | 禁牧 Ungrazed | 平均值Mean | 6.67a | 3 271.00a | 3.20a | 10.93a | 5 482.33a | 4.07a | |
| 标准差Standard deviation | 0.67 | 169.12 | 0.1 | 1.24 | 352.43 | 0.15 | |||
| 放牧 Grazed | 平均值Mean | 0.10b | 6.33b | 0.13b | 0.13b | 7.67b | 0.20b | ||
| 标准差Standard deviation | 0.00 | 4.93 | 0.06 | 0.06 | 6.43 | 0.10 | |||
| 油松林 Pinus tabuliformis forest | 禁牧 Ungrazed | 平均值Mean | 6.77a | 1 809.33a | 2.43a | 11.90a | 3 290.67a | 3.17a | |
| 标准差Standard deviation | 0.80 | 375.22 | 0.25 | 1.85 | 763.97 | 0.35 | |||
| 放牧 Grazed | 平均值Mean | 1.10b | 321.00b | 1.10b | 1.70b | 490.67b | 1.33b | ||
| 标准差Standard deviation | 0.20 | 99.78 | 0.17 | 0.30 | 145.55 | 0.21 | |||
Table 3
Changes in soil physicochemical properties under ungrazed and grazed treatments"
| 土壤理化性质 Soil physicochemical properties | 华北落叶松林 Larix gmelinii var. principis-rupprechtii forest | 油松林 Pinus tabuliformis forest | |||
| 禁牧Ungrazed | 放牧Grazed | 禁牧Ungrazed | 放牧Grazed | ||
| pH | 6.40±0.04b | 6.71±0.23a | 6.24±0.05a | 6.28±0.08a | |
| 阳离子交换量Cation exchange capacity/ (cmol?kg?1) | 29.42±1.65a | 26.18±4.73a | 26.64±3.16a | 27.99±1.29a | |
| 有机质含量Soil organic matter content/ (g?kg?1) | 53.57±2.72a | 43.17±12.47a | 39.31±6.87a | 44.63±6.59a | |
| 全氮含量Total nitrogen content/ (g?kg?1) | 2.68±0.19a | 2.35±0.52a | 1.85±0.36a | 2.07±0.35a | |
| 全磷含量Total phosphorus content/ (g?kg?1) | 0.69±0.07a | 0.54±0.11b | 0.61±0.13a | 0.58±0.18a | |
| 全钾含量Total potassium content/ (g?kg?1) | 21.63±1.21a | 22.03±0.58a | 22.66±0.43a | 22.00±0.47b | |
| 交换性钙含量Exchangeable calcium content/ (mg?kg?1) | 6 476.56±368.57a | 6 885.79±691.86a | 7 195.30±448.70a | 7 452.02±643.33a | |
| 交换性镁含量Exchangeable magnesium content/ (mg?kg?1) | 445.99±111.38a | 535.85±76.22a | 557.64±96.32a | 520.58±141.58a | |
| 有效硫含量Available sulfur content/ (mg?kg?1) | 6.16±0.85a | 4.70±1.70a | 5.90±1.08a | 5.06±0.99a | |
| 有效铁含量Available iron content/ (mg?kg?1) | 137.78±21.30a | 124.37±47.58a | 156.94±26.45a | 172.43±25.98a | |
| 有效锰含量Available manganese content/ (mg?kg?1) | 48.18±9.81a | 43.24±18.86a | 25.39±3.11a | 30.84±10.28a | |
| 有效锌含量Available zinc content/ (mg?kg?1) | 2.49±1.01a | 1.80±1.73a | 0.79±0.13a | 0.55±0.26a | |
Table 4
Principal component loadings for surface fuel characteristics, potential surface fire behavior, and understory plant diversity"
| 项目Item | 指标 Variables | 主成分1 Principal component 1 (PC1) | 主成分2 Principal component 2 (PC2) | 主成分3 Principal component 3 (PC3) |
| 地表可燃物特征 Surface fuel characteristic | 1 h 时滞可燃物载量 1 h time-lag fuel load/ (t?hm?2) | ?0.917 | ?0.572 | 0.842 |
| 10 h 时滞可燃物载量 10 h time-lag fuel load/ (t?hm?2) | 0.525 | ?0.605 | 0.038 | |
| 100 h 时滞可燃物载量 100 h time-lag fuel load/ (t?hm?2) | 0.456 | 1.059 | ?1.063 | |
| 草本可燃物载量 Herb fuel load/ (t?hm?2) | 1.284 | 0.335 | ?0.367 | |
| 地表可燃物床层厚度 Surface fuel bed depth/m | 1.616 | ?0.483 | ?0.159 | |
| 地表潜在火行为 Potential surface fire behavior | 地表火蔓延速率 Surface fire rate of spread/ (m?min?1) | 1.601 | ?0.555 | ?0.134 |
| 地表火火线强度 Surface fireline intensity/ (kW?m?1) | 1.444 | ?0.915 | 0.005 | |
| 地表火火焰长度 Surface fire flame length/m | 1.538 | ?0.611 | ?0.237 | |
| 多样性指数 Biodiversity index | 草本层丰富度指数 Herb richness index | 1.091 | 0.681 | 0.636 |
| 草本层Shannon-Wiener多样性指数 Herb Shannon-Wiener index | 1.048 | 1.178 | 0.691 | |
| 草本层Simpson多样性指数 Herb Simpson index | 0.981 | 1.216 | 0.596 | |
| 灌木层Shannon-Wiener多样性指数 Shrub Shannon-Wiener index | ?0.614 | 0.585 | ?0.870 | |
| 特征值 Eigenvalues | 5.152 | 2.334 | 1.292 | |
| 方差贡献率 Proportion explained (%) | 42.92 | 19.45 | 10.76 | |
| 累计方差贡献率 Cumulative proportion (%) | 42.92 | 62.38 | 73.15 | |
Table 5
Composite scores and rankings of the two coniferous forest types under ungrazed and grazed treatments"
| 林分类型 Forest stand type | 处理 Treatment | 主成分1 Principal component 1 (PC1) | 主成分2 Principal component 2 (PC2) | 主成分3 Principal component 3 (PC3) | 综合得分 Comprehensive score | 排名 Rank |
| 华北落叶松林Larix gmelinii var. principis-rupprechtii forest | 放牧Grazed | 0.648 | 0.106 | ?0.369 | 3.109 | 1 |
| 油松林Pinus tabuliformis forest | 放牧Grazed | 0.281 | ?0.322 | 0.391 | 1.201 | 2 |
| 华北落叶松林Larix gmelinii var. principis-rupprechtii forest | 禁牧Ungrazed | ?0.380 | 0.613 | ?0.188 | ?0.771 | 3 |
| 油松林Pinus tabuliformis forest | 禁牧Ungrazed | ?0.549 | ?0.397 | 0.166 | ?3.541 | 4 |
| 鲍士旦. 2000. 土壤农化分析. 北京: 中国农业出版社. | |
| Bao S D. 2000. Soil agricultural chemistry analysis. Beijing: China Agriculture Press. [in Chinese] | |
| 陈思帆, 陈 锋, 索奥丽, 等. 不同烈度林火对油松林土壤微生物群落组成的影响. 生态学报, 2025, 45 (9): 1- 14. | |
| Chen S F, Chen F, Suo A L, et al. Investigation of soil microbial community composition in Pinus tabulaeformis forests after different fire severities. Acta Ecologica Sinica, 2025, 45 (9): 1- 14. | |
| 陈雅轩, 张彧璠, 王佳乐, 等. 不同林龄华北落叶松土壤酶活性和碳氮磷化学计量变化. 生态学报, 2025, 45 (1): 25- 41. | |
| Chen Y X, Zhang Y F, Wang J L, et al. Changes of soil enzyme activity and the stoichiometry of carbon, nitrogen, and phosphorus in Larix gmelinii var. principis-rupprechtii plantations at different ages. Acta Ecologica Sinica, 2025, 45 (1): 25- 41. | |
|
郭晋平, 丁颖秀, 张芸香. 关帝山华北落叶松林凋落物分解过程及其养分动态. 生态学报, 2009, 29 (10): 5684- 5695.
doi: 10.3321/j.issn:1000-0933.2009.10.060 |
|
|
Guo J P, Ding Y X, Zhang Y X, et al. Decomposition process and nutrient dynamic of litterfall in a Larix gmelinii var. principis-rupprechtii stand in Guandishan Mountains. Acta Ecologica Sinica, 2009, 29 (10): 5684- 5695.
doi: 10.3321/j.issn:1000-0933.2009.10.060 |
|
|
胡同欣, 宋浩然, 李 飞, 等. 不同火烧强度对兴安落叶松根系分解和土壤有机碳的影响. 东北林业大学学报, 2023, 51 (11): 115- 124.
doi: 10.3969/j.issn.1000-5382.2023.11.018 |
|
|
Hu T X, Song H R, Li F, et al. Effect of different burning intensities on decomposition of Larix gmelinii root system and its contribution to soil organic carbon. Journal of Northeast Forestry University, 2023, 51 (11): 115- 124.
doi: 10.3969/j.issn.1000-5382.2023.11.018 |
|
| 江康威, 张青青, 王亚菲, 等. 2024a. 天山北坡中段草地生态系统多功能性对放牧的响应. 生态学报, 44(8): 3440−3456. | |
| Jiang K W, Zhang Q Q, Wang Y F, et al. 2024a. Response of grassland ecosystem multifunctionality to grazing in the middle part of the northern slope, Tianshan Mountain. Acta Ecologica Sinica, 44(8): 3440−3456. [in Chinese] | |
| 江康威, 张青青, 王亚菲, 等. 2024b. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系. 植物生态学报, 48(6): 701−718. | |
| Jiang K W, Zhang Q Q, Wang Y F, et al. 2024b. Characteristics of plant functional groups and the relationships with soil environmental factors in middle part of northern slope of Tianshan Mountains under different grazing intensities. Chinese Journal of Plant Ecology, 48(6): 701−718. [in Chinese] | |
| 李树宝. 2023. 旺业甸华北落叶松人工林土壤与枯落物特征及保水保肥能力评价. 呼和浩特: 内蒙古农业大学. | |
| Li S B. 2023. Evaluation of soil and litter characteristics and water and fertilizer retention capacity of Larix gmelinii var. principis-rupprechtii plantation in Wangyedian. Hohhot: Inner Mongolia Agricultural University. [in Chinese] | |
|
李天琦, 曹继容, 柳小妮, 等. 温带草原土壤酶化学计量与限制性养分对放牧的响应. 植物生态学报, 2025, 49 (1): 1- 11.
doi: 10.17521/cjpe.2024.0433 |
|
|
Li T Q, Cao J R, Liu X N, et al. Response of soil enzyme activity to grazing and identification of soil limiting nutrients in a temperate grassland. Chinese Journal of Plant Ecology, 2025, 49 (1): 1- 11.
doi: 10.17521/cjpe.2024.0433 |
|
|
李毅夫, 孙 斌, 南志标, 等. 中国北方林间草地分类体系研究. 草业学报, 2025, 34 (3): 175- 188.
doi: 10.11686/cyxb2024197 |
|
|
Li Y F, Sun B, Nan Z B, et al. Classification system of inter-silva grasslands in northern China. Acta Prataculturae Sinica, 2025, 34 (3): 175- 188.
doi: 10.11686/cyxb2024197 |
|
| 陕莎莎, 张 鸾, 赵利华, 等. 晋西北丘陵风沙区人工针叶林枯落物–土壤碳氮磷对放牧干扰的响应. 应用与环境生物学报, 2024, 30 (2): 229- 237. | |
| Shan S S, Zhang L, Zhao L H, et al. Response of little-soil C, N, and P to grazing disturbance in coniferous plantations in sandy-hilly region of northwest Shanxi Province, China. Chinese Journal of Applied and Environmental Biology, 2024, 30 (2): 229- 237. | |
| 单延龙, 王明霞, 于 渤, 等. 呼中国家级自然保护区主要可燃物类型地下火燃烧特征. 北华大学学报(自然科学版), 2022, 23 (6): 815- 823. | |
| Shan Y L, Wang M X, Yu B, et al. Combustion characteristics of underground fires with main fuel types in Huzhong National Nature Reserve. Journal of Beihua University (Natural Science), 2022, 23 (6): 815- 823. | |
| 陶长森. 2019. 北京山区主要针叶林冠层可燃物特征及潜在火行为研究. 北京: 北京林业大学. | |
| Tao C S. 2019. Characteristics of canopy fuel and potential fire behavior in major coniferous forests in the mountainous area, Beijing. Beijing: Beijing Forestry University. [in Chinese] | |
|
吴春英, 张少华, 孟庆荔, 等. 开发利用林间、林下草地资源大力发展林区牧业经济. 吉林畜牧兽医, 2005, (8): 34- 35.
doi: 10.3969/j.issn.1672-2078.2005.08.015 |
|
|
Wu C Y, Zhang S H, Meng Q L, et al. Development and utilization of forest, understory grassland resources to develop forest animal husbandry economy. Jilin Animal Husbandry and Veterinary Medicine, 2005, (8): 34- 35.
doi: 10.3969/j.issn.1672-2078.2005.08.015 |
|
| 王 菊, 许明祥, 孙 会, 等. 2023. 放牧对陕北黄土丘陵区刺槐林群落特征的影响. 草地学报, 31(6): 1826−1833. | |
| Wang J, Xu M X, Sun H, et al. 2023. Effects of grazing on community characteristics of Robinia pseudoacacia forest in the Hilly Loess Plateau Region of northern Shaanxi Province. Acta Prataculturae Sinica, 31(6): 1826−1833. [in Chinese] | |
|
王志波, 白高娃, 李银祥, 等. 华北落叶松人工林凋落物组成及动态研究. 内蒙古林业科技, 2021, 47 (2): 15- 19.
doi: 10.3969/j.issn.1007-4066.2021.02.004 |
|
|
Wang Z B, Bai G W, Li Y X, et al. Composition of litterfall and dynamic study in Larix gmelinii var. principis-rupprechtii plantation. Inner Mongolia Forestry Science and Technology, 2021, 47 (2): 15- 19.
doi: 10.3969/j.issn.1007-4066.2021.02.004 |
|
|
肖 军, 雷 蕾, 李肇晨, 等. 不同经营方式对油松成熟人工林生长和植物多样性的影响. 北京林业大学学报, 2023, 45 (12): 1- 10.
doi: 10.12171/j.1000-1522.20220302 |
|
|
Xiao J, Lei L, Li Z C, et al. Effects of different management methods on growth and plant diversity in mature Pinus tabuliformis plantations. Journal of Beijing Forestry University, 2023, 45 (12): 1- 10.
doi: 10.12171/j.1000-1522.20220302 |
|
| 徐国巧, 李 校, 万一峰, 等. 围栏封育对华北落叶松人工林草本层和土壤的短期影响. 林业资源管理, 2021, (2): 158- 163. | |
| Xu G Q, Li X, Wan Y F, et al. Short-term impact of enclosure on grass layer and soil in Larix gmelinii var. principis-rupprechtii plantations. Forest Resources Management, 2021, (2): 158- 163. | |
| 严积有, 徐凯然, 申新山. 放牧干扰对人工林土壤物理性状的影响. 水土保持通报, 2008, 28 (6): 138- 141. | |
| Yan J Y, Xu K R, Shen X S. Influences of grazing disturbance on soil physical properties in planted forest. Bulletin of Soil and Water Conservation, 2008, 28 (6): 138- 141. | |
|
尹赛男, 单延龙, 陈 响, 等. 不同恢复程度的长白山风灾区地下火阴燃特征和发生概率模拟. 林业科学, 2023, 59 (9): 117- 126.
doi: 10.11707/j.1001-7488.LYKX20220648 |
|
|
Yin S N, Shan Y L, Chen X, et al. Simulation of the smoldering characteristics and occurrence probability of sub-surface fires in the typhoon-caused disaster areas of Changbaishan Mountain with different recovery degrees. Scientia Silvae Sinicae, 2023, 59 (9): 117- 126.
doi: 10.11707/j.1001-7488.LYKX20220648 |
|
|
周运红, 李建亮, 王利东, 等. 间伐对华北落叶松林凋落物分解的影响. 北京林业大学学报, 2021, 43 (12): 29- 37.
doi: 10.12171/j.1000-1522.20210114 |
|
|
Zhou Y H, Li J L, Wang L D, et al. Effects of thinning on litter decomposition of Larix gmelinii var. principis-rupprechtii plantation. Journal of Beijing Forestry University, 2021, 43 (12): 29- 37.
doi: 10.12171/j.1000-1522.20210114 |
|
|
Abatzoglou J T, McEvoy D J, Nauslar N J, et al. Downscaled subseasonal fire danger forecast skill across the contiguous United States. Atmospheric Science Letters, 2023, 24 (8): e1165.
doi: 10.1002/asl.1165 |
|
|
Alexander M E, Cruz M J. Modelling the effects of surface and crown fire behaviour on serotinous cone opening in jack pine and lodgepole pine forests. International Journal of Wildland Fire, 2012, 21 (6): 709- 721.
doi: 10.1071/WF11153 |
|
| Alexander M E, Lanoville R A. 1989. Predicting fire behavior in the black spruce-lichen woodland fuel type of western and northern Canada-poster. Forestry Canada, Northern Forestry Center, & Government of the Northwest Territories, Department of Renewable Resources, Territorial Forest Fire Center, 16. | |
|
Arellano-Pérez S, Castedo-Dorado F, Álvarez-González J G, et al. Mid-term effects of a thin-only treatment on fuel complex, potential fire behaviour and severity and post-fire soil erosion protection in fast-growing pine plantations. Forest Ecology and Management, 2020, 460, 117895.
doi: 10.1016/j.foreco.2020.117895 |
|
| Bailey D W, Mosley J C, Estell R E, et al. Synthesis paper: targeted livestock grazing: prescription for healthy rangelands. Rangeland Ecology & Management, 2019, 72 (6): 865- 877. | |
|
Batcheler M, Smith M M, Swanson M E, et al. Assessing silvopasture management as a strategy to reduce fuel loads and mitigate wildfire risk. Scientific Reports, 2024, 14 (1): 5954.
doi: 10.1038/s41598-024-56104-3 |
|
|
Brockerhoff E G, Jactel H, Parrotta J A, et al. Plantation forests and biodiversity: oxymoron or opportunity. Biodiversity and Conservation, 2008, 17 (5): 925- 951.
doi: 10.1007/s10531-008-9380-x |
|
|
Brodie E G, Knapp E E, Brooks W R, et al. Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather. Fire Ecology, 2024, 20 (1): 17.
doi: 10.1186/s42408-023-00241-z |
|
| Bruegger R A, Varelas L A, Howery L D, et al. Targeted grazing in southern Arizona: using cattle to reduce fine fuel loads. Rangeland Ecology & Management, 2016, 69 (1): 43- 51. | |
| Chen G, Qiu M, Wang P, et al. Continuous wildfires threaten public and ecosystem health under climate change across continents. Frontiers of Environmental Science & Engineering, 2024, 18 (10): 130. | |
|
Connell J H. Diversity in tropical rain forests and coral reefs. Science, 1978, 199 (4335): 1302- 1310.
doi: 10.1126/science.199.4335.1302 |
|
|
Cruz M G, Alexander M E, Plucinski M P. The effect of silvicultural treatments on fire behaviour potential in radiata pine plantations of South Australia. Forest Ecology and Management, 2017, 397, 27- 38.
doi: 10.1016/j.foreco.2017.04.028 |
|
| Cui X L, Alam M A, Perry G L, et al. Green firebreaks as a management tool for wildfires: lessons from China. Journal of Environmental Management, 2019, 233, 329- 336. | |
|
Dara A, Baumann M, Hölzel N, et al. Post-Soviet land-use change affected fire regimes on the Eurasian steppes. Ecosystems, 2020, 23 (5): 943- 956.
doi: 10.1007/s10021-019-00447-w |
|
| Davies K W, Bates J D, Boyd C S. Response of planted sagebrush seedlings to cattle grazing applied to decrease fire probability. Rangeland Ecology & Management, 2020, 73 (5): 629- 635. | |
|
Davies K W, Boyd C S, Bates J D, et al. Dormant season grazing may decrease wildfire probability by increasing fuel moisture and reducing fuel amount and continuity. International Journal of Wildland Fire, 2015, 24 (6): 849- 856.
doi: 10.1071/WF14209 |
|
|
Davies K W, Boyd C S, Bates J D, et al. Winter grazing can reduce wildfire size, intensity and behaviour in a shrub-grassland. International Journal of Wildland Fire, 2016, 25 (2): 191- 199.
doi: 10.1071/WF15055 |
|
|
Davies K W, Wollstein K, Dragt B, et al. Grazing management to reduce wildfire risk in invasive annual grass prone sagebrush communities. Rangelands, 2022, 44 (3): 194- 199.
doi: 10.1016/j.rala.2022.02.001 |
|
| Donaldson J, Archibald S, Govender N, et al. Ecological engineering through fire-herbivory feedbacks drives the formation of savanna grazing lawns. Journal of Applied Ecology, 2017, 55 (1): 225- 235. | |
|
Duan R, Wang C, Wang X, et al. Differences in plant species diversity between conifer (Pinus tabulaeformis) plantations and natural forests in middle of the Loess plateau. Russian Journal of Ecology, 2009, 40 (7): 501- 509.
doi: 10.1134/S106741360907008X |
|
|
Evans E W, Ellsworth L M, Litton C M. Impact of grazing on fine fuels and potential wildfire behaviour in a non-native tropical grassland. Pacific Conservation Biology, 2015, 21 (2): 126- 132.
doi: 10.1071/PC14910 |
|
|
Fang W, Cai Q, Zhao Q, et al. Species richness patterns and the determinants of larch forests in China. Plant Diversity, 2022, 44 (5): 436- 444.
doi: 10.1016/j.pld.2022.05.002 |
|
|
Gass T M, Binkley D. Soil nutrient losses in an altered ecosystem are associated with native ungulate grazing. Journal of Applied Ecology, 2011, 48 (4): 952- 960.
doi: 10.1111/j.1365-2664.2011.01996.x |
|
|
Głowacz K, Niżnikowski R. The effect of animal grazing on vegetation and soil and element cycling in nature. Environmental Science and Pollution Research, 2018, 25 (4): 3565- 3570.
doi: 10.1007/s11356-017-0740-5 |
|
|
Gong D, Sun L, Hu T. Characterizing the occurrence of wildland-urban interface fires and their important factors in China. Ecological Indicators, 2024, 165, 112179.
doi: 10.1016/j.ecolind.2024.112179 |
|
| Hakkenberg C R, Peet R K, Wentworth T R, et al. Tree canopy cover constrains the fertility-diversity relationship in plant communities of the southeastern United States. Ecology (Durham), 2020, 101 (10): 1- 13. | |
|
Hao Y, He Z. Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. Plos One, 2019, 14 (4): e0215223.
doi: 10.1371/journal.pone.0215223 |
|
|
Herrero-Jáuregui C, Oesterheld M. Effects of grazing intensity on plant richness and diversity: a meta-analysis. Oikos, 2018, 127 (6): 757- 766.
doi: 10.1111/oik.04893 |
|
| Hevia A, Crabiffosse A, Álvarez-González J G, et al. Assessing the effect of pruning and thinning on crown fire hazard in young Atlantic maritime pine forests. Journal of Environmental Management, 2018, 205, 9- 17. | |
| Hodges S C. 2010. Soil fertility basics. Soil science extension. Raleigh, NC: North Carolina State University. | |
|
Hong R, Zhu X, Ma C, et al. The effect of prescribed burning on the growth and regeneration of Pinus yunnanensis. Forest Ecology and Management, 2025, 578, 122460.
doi: 10.1016/j.foreco.2024.122460 |
|
|
Hu H, Hu T, Sun L. Spatial heterogeneity of soil respiration in a Larix gmelinii forest and the response to prescribed fire in the Greater Xing’an Mountains, China. Journal of Forestry Research, 2016, 27 (5): 1153- 1162.
doi: 10.1007/s11676-016-0215-4 |
|
|
Jiménez E, Vega-Nieva D, Rey E, et al. Midterm fuel structure recovery and potential fire behaviour in a Pinus pinaster Ait forest in northern central Spain after thinning and mastication. European Journal of Forest Research, 2016, 135 (4): 675- 686.
doi: 10.1007/s10342-016-0963-x |
|
|
Karp A T, Koerner S E, Hempson G P, et al. Grazing herbivores reduce herbaceous biomass and fire activity across African savannas. Ecology Letters, 2024, 27 (6): e14450.
doi: 10.1111/ele.14450 |
|
|
Kladivová A, Münzbergová Z. Interacting effects of grazing and habitat conditions on seedling recruitment and establishment. Journal of Vegetation Science, 2016, 27 (4): 834- 843.
doi: 10.1111/jvs.12395 |
|
|
Libonati R. Megafires are here to stay-and blaming only climate change won’t help. Nature, 2024,
doi: 10.1038/d41586-024-00641-4 |
|
|
Liu C, Li W, Xu J, et al. Response of soil nutrients and stoichiometry to grazing management in alpine grassland on the Qinghai-Tibet Plateau. Soil and Tillage Research, 2021, 206, 104822.
doi: 10.1016/j.still.2020.104822 |
|
|
Mancilla-Leytón J M, Hernando C, Cambrollé J, et al. Can shrub flammability be affected by goat grazing. Flammability Parameters of Mediterranean Shrub Species under Grazing. Sustainability, 2021, 13 (3): 1555.
doi: 10.3390/su13031555 |
|
|
Marcora P I, Renison D, País-Bosch A I, et al. The effect of altitude and grazing on seedling establishment of woody species in central Argentina. Forest Ecology and Management, 2013, 291, 300- 307.
doi: 10.1016/j.foreco.2012.11.030 |
|
|
Masters D G, Judson G J, White C L, et al. Current issues in trace element nutrition of grazing livestock in Australia and New Zealand. Australian Journal of Agricultural Research, 1999, 50 (8): 1341- 1364.
doi: 10.1071/AR99035 |
|
| Orr D A, Bates J D, Davies K W. Grazing intensity effects on fire ignition risk and spread in sagebrush steppe. Rangeland Ecology & Management, 2023, 89, 51- 60. | |
|
Parissi Z M, Papaioannou A, Abraham E M, et al. Influence of combined grazing by wild boar and small ruminant on soil and plant nutrient contents in a coppice oak forest. Journal of Plant Nutrition and Soil Science, 2014, 177 (5): 783- 791.
doi: 10.1002/jpln.201300550 |
|
|
Pausas J G, Ribeiro E. Fire and plant diversity at the global scale. Global Ecology and Biogeography, 2017, 26 (8): 889- 897.
doi: 10.1111/geb.12596 |
|
|
Piqué M, Domènech R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Science of the Total Environment, 2018, 618, 1539- 1546.
doi: 10.1016/j.scitotenv.2017.09.316 |
|
|
Piqué M, González-Olabarria J R, Busquets E. Dynamic evaluation of early silvicultural treatments for wildfire prevention. Forests, 2022, 13 (6): 858.
doi: 10.3390/f13060858 |
|
| Prichard S J, Sandberg D V, Ottmar R D, et al. 2013. Fuel characteristic classification system version 3.0: technical documentation (PNW-GTR-887). Portland: Department of Agriculture, Forest Service, Pacific Northwest Research Station, 79. | |
|
Radcliffe D C, Bakker J D, Churchill D J, et al. How are long-term stand structure, fuel profiles, and potential fire behavior affected by fuel treatment type and intensity in Interior Pacific Northwest forests. Forest Ecology and Management, 2024, 553, 121594.
doi: 10.1016/j.foreco.2023.121594 |
|
|
Ratcliff F, Rao D R, Barry S J, et al. Cattle grazing reduces fuel and leads to more manageable fire behavior. California Agriculture, 2022, 76 (2/3): 60- 69.
doi: 10.3733/ca.2022a0011 |
|
|
Rodrigues M, Alcasena F, Vega-García C. Modeling initial attack success of wildfire suppression in Catalonia, Spain. Science of the Total Environment, 2019, 666, 915- 927.
doi: 10.1016/j.scitotenv.2019.02.323 |
|
|
Rouet-Leduc J, Pe'er G, Moreira F, et al. Effects of large herbivores on fire regimes and wildfire mitigation. Journal of Applied Ecology, 2021, 58 (12): 2690- 2702.
doi: 10.1111/1365-2664.13972 |
|
|
Salis M, Laconi M, Ager A A, et al. Evaluating alternative fuel treatment strategies to reduce wildfire losses in a Mediterranean area. Forest Ecology and Management, 2016, 368, 207- 221.
doi: 10.1016/j.foreco.2016.03.009 |
|
| Schachtschneider C L, Strand E K, Launchbaugh K L, et al. Targeted cattle grazing to alter fuels and reduce fire behavior metrics in shrub-grasslands. Rangeland Ecology & Management, 2024, 96, 105- 116. | |
| Scott A C, Bowman D M J S, Bond W J, et al. 2014. Fire on eearth: an introduction. Chichester: Geological Journal. | |
|
Siegel K J, Macaulay L, Shapero M, et al. Impacts of livestock grazing on the probability of burning in wildfires vary by region and vegetation type in California. Journal of Environmental Management, 2022, 322, 116092.
doi: 10.1016/j.jenvman.2022.116092 |
|
| Starrs G I, Siegel K J, Larson S, et al. 2024. Quantifying large-scale impacts of cattle grazing on annual burn probability in Napa and Sonoma Counties, California. Ecology and Society, doi: 10.5751/ES-15080-290310. | |
|
Tang S, Wang K, Xiang Y, et al. Heavy grazing reduces grassland soil greenhouse gas fluxes: a global meta-analysis. Science of the Total Environment, 2019, 654, 1218- 1224.
doi: 10.1016/j.scitotenv.2018.11.082 |
|
|
Tessema Z K, de Boer W F, Baars R M T, et al. Changes in soil nutrients, vegetation structure and herbaceous biomass in response to grazing in a semi-arid savanna of Ethiopia. Journal of Arid Environments, 2011, 75 (7): 662- 670.
doi: 10.1016/j.jaridenv.2011.02.004 |
|
| Thomas T W, Davies K W. Grazing effects on fuels vary by community state in Wyoming big sagebrush steppe. Rangeland Ecology & Management, 2023, 89, 42- 50. | |
|
Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility. Nature, 1994, 371 (6500): 783- 785.
doi: 10.1038/371783a0 |
|
|
Török P, Penksza K, Tóth E, et al. Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecology and Evolution, 2018, 8 (20): 10326- 10335.
doi: 10.1002/ece3.4508 |
|
| Tóth E, Deák B, Valkó O, et al. Livestock type is more crucial than grazing intensity: traditional cattle and sheep grazing in short-grass steppes. Land Degradation & Development, 2018, 29 (2): 231- 239. | |
|
Travers S K, Eldridge D J, Koen T B, et al. Livestock and kangaroo grazing have little effect on biomass and fuel hazard in semi-arid woodlands. Forest Ecology and Management, 2020, 467, 118165.
doi: 10.1016/j.foreco.2020.118165 |
|
|
Weston C J, Stefano J D, Hislop S, et al. Effect of recent fuel reduction treatments on wildfire severity in southeast Australian Eucalyptus sieberi forests. Forest Ecology and Management, 2022, 505, 119924.
doi: 10.1016/j.foreco.2021.119924 |
|
|
Williamson M A, Fleishman E, Mac Nally R C, et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biological Invasions, 2020, 22 (2): 663- 680.
doi: 10.1007/s10530-019-02120-8 |
|
|
Zong X, Tian X, Wang X. An optimal firebreak design for the boreal forest of China. Science of the Total Environment, 2021, 781, 146822.
doi: 10.1016/j.scitotenv.2021.146822 |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||