Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 95-103.doi: 10.11707/j.1001-7488.LYKX20240234
• Research papers • Previous Articles Next Articles
Bolong Ma1(),Junyao Zhang1,Qingzi Lü1,Zeyi Li1,Yixuan Chen1,Jiaxuan Guo1,Jing Cai1,2,*(
)
Received:
2024-04-26
Online:
2025-01-25
Published:
2025-02-09
Contact:
Jing Cai
E-mail:m17835424332@163.com;cjcaijing@163.com
CLC Number:
Bolong Ma,Junyao Zhang,Qingzi Lü,Zeyi Li,Yixuan Chen,Jiaxuan Guo,Jing Cai. Frost Fatigue and Its Relationships with Freeze-Thaw-Induced Embolism and Xylem Anatomical Structure in Six Temperate Trees[J]. Scientia Silvae Sinicae, 2025, 61(1): 95-103.
Table 1
The P12, P50, P88 for native vulnerability curve (NVC) and frost fatigue vulnerability curve (FFVC) of six tree species (mean ± SE)"
树种Tree species | 压力值 Tension value | NVC | FFVC | |
元宝枫 A. truncatum | P12 /MPa | ?3.79 ± 0.06 | ?2.45 ± 0.72 | |
P50 /MPa | ?4.65 ± 0.04 | ?4.26 ± 0.45 | ||
P88 /MPa | ?5.32 ± 0.06 | ?5.48 ± 0.20 | ||
I-101×84K杨 I-101 (Populus alba) × 84K (P. alba×P. glandulosa) | P12 /MPa | ?1.52 ± 0.06 | ?0.87 ± 0.11 | ** |
P50 /MPa | ?2.08 ± 0.03 | ?1.43 ± 0.04 | *** | |
P88 /MPa | ?2.56 ± 0.04 | ?1.94 ± 0.04 | *** | |
鹅掌楸 L. chinense | P12 /MPa | ?1.59 ± 0.05 | ?0.62 ± 0.09 | ** |
P50 /MPa | ?1.89 ± 0.04 | ?1.73 ± 0.07 | * | |
P88 /MPa | ?2.13 ± 0.04 | ?1.94 ± 0.09 | ||
旱柳 S. matsudana | P12 /MPa | ?1.48 ± 0.02 | ?0.63 ± 0.07 | *** |
P50 /MPa | ?1.81 ± 0.02 | ?1.37 ± 0.02 | *** | |
P88 /MPa | ?2.07 ± 0.04 | ?1.61 ± 0.01 | *** | |
白桦 B. platyphylla | P12 /MPa | ?1.68 ± 0.03 | ?1.53 ± 0.07 | |
P50 /MPa | ?1.91 ± 0.01 | ?1.79 ± 0.02 | ** | |
P88 /MPa | ?2.07 ± 0.01 | ?1.90 ± 0.02 | ** | |
法国梧桐 P. orientalis | P12 /MPa | ?1.38 ± 0.07 | ?0.67 ± 0.10 | ** |
P50 /MPa | ?1.70 ± 0.06 | ?1.45 ± 0.06 | * | |
P88 /MPa | ?1.96 ± 0.06 | ?1.70 ± 0.04 | * |
Table 2
T The native percentage loss of hydraulic conductivity, the degree of frost fatigue, and xylem structure traits in six tree species (mean ± SE)"
指标 Index | 元宝枫 A. truncatum | I-101×84K杨 I-101(Populus alba) × 84K (P. alba×P. glandulosa) | 鹅掌楸 L. chinense | 旱柳 S. matsudana | 白桦 B. platyphylla | 法国梧桐 P. orientalis |
NPLC (%) | 10.77 ± 2.69d | 44.50 ± 9.14ab | 13.85 ± 1.02cd | 63.84 ± 8.93a | 21.94 ± 4.17cd | 32.64 ± 7.03bc |
DFF (%) | 2.04 ± 3.57e | 31.17 ± 3.11a | 12.65 ± 2.87cd | 26.46 ± 2.43ab | 6.25 ± 0.90de | 18.42 ± 3.00bc |
D /μm | 21.45 ± 0.67c | 29.35 ± 1.54b | 26.69 ± 0.24b | 34.76 ± 0.61a | 22.85 ± 0.78c | 29.09 ± 0.59b |
VD /mm?2 | 198.13 ± 12.83d | 165.30 ± 15.27d | 390.78 ± 12.57a | 170.20 ± 19.24d | 322.37 ± 20.64b | 266.41 ± 18.68c |
F (%) | 0.076 ± 0.006d | 0.116 ± 0.003c | 0.233 ± 0.013a | 0.177 ± 0.017b | 0.139 ± 0.007c | 0.189 ± 0.011b |
FC | 0.063 ± 0.003c | 0.037 ± 0.007d | 0.093 ± 0.012ab | 0.047 ± 0.007cd | 0.107 ± 0.009a | 0.070 ± 0.006bc |
WD/ (g·cm?3) | 0.574 ± 0.014a | 0.335 ± 0.012e | 0.375 ± 0.007d | 0.362 ± 0.013de | 0.458 ± 0.012c | 0.514 ± 0.012b |
李 荣, 党 维, 蔡 靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报, 2016, 40 (3): 255- 263.
doi: 10.17521/cjpe.2015.0260 |
|
Li R, Dang W, Cai J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. Chinese Journal of Plant Ecology, 2016, 40 (3): 255- 263.
doi: 10.17521/cjpe.2015.0260 |
|
李 荣, 姜在民, 张硕新, 等. 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080 |
|
Li R, Jiang Z M, Zhang S X, et al. A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 2015, 39 (8): 838- 848.
doi: 10.17521/cjpe.2015.0080 |
|
李志民, 王传宽. 木本植物木质部的冻融栓塞应对研究进展. 植物生态学报, 2019, 43 (8): 635- 647.
doi: 10.17521/cjpe.2019.0076 |
|
Li Z M, Wang C K. Research progress on responses of xylem of woody plants to freeze-thaw embolism. Chinese Journal of Plant Ecology, 2019, 43 (8): 635- 647.
doi: 10.17521/cjpe.2019.0076 |
|
张海昕, 李 姗, 张硕新, 等. 4个杨树子代木质部导管结构与栓塞脆弱性的关系. 林业科学, 2013, 49 (5): 54- 61. | |
Zhang H X, Li S, Zhang S X, et al. Relationships between xylem vessel structure and embolism vulnerability in four Populus clones. Scientia Silvae Sinicae, 2013, 49 (5): 54- 61. | |
赵 涵, 黄 瑾, 张友静, 等. 开口导管比例对栓塞脆弱性曲线类型的影响. 林业科学, 2020, 56 (5): 50- 59. | |
Zhao H, Huang J, Zhang Y J, et al. Influence of open vessel proportion on the types of embolism vulnerability curves. Scientia Silvae Sinicae, 2020, 56 (5): 50- 59. | |
Améglio T, Bodet C, Lacointe A, et al. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiology, 2002, 22 (17): 1211- 1220.
doi: 10.1093/treephys/22.17.1211 |
|
Charrier G, Charra-Vaskou K, Kasuga J, et al. Freeze-thaw stress: effects of temperature on hydraulic conductivity and ultrasonic activity in ten woody angiosperms. Plant Physiology, 2014, 164 (2): 992- 998.
doi: 10.1104/pp.113.228403 |
|
Choat B, Medek D E, Stuart S A, et al. Xylem traits mediate a trade-off between resistance to freeze-thaw-induced embolism and photosynthetic capacity in overwintering evergreens. New Phytologist, 2011, 191 (4): 996- 1005.
doi: 10.1111/j.1469-8137.2011.03772.x |
|
Christensen-Dalsgaard K K, Tyree M T. 2013. Does freezing and dynamic flexing of frozen branches impact the cavitation resistance of Malus domestica and the Populus clone Walker? Oecologia, 173(3): 665–674. | |
Christensen-Dalsgaard K K, Tyree M T. 2014. Frost fatigue and spring recovery of xylem vessels in three diffuse-porous trees in situ. Plant, Cell & Environment, 37(5): 1074–1085. | |
Cochard H, Damour G, Bodet C, et al. Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 2005, 124 (4): 410- 418.
doi: 10.1111/j.1399-3054.2005.00526.x |
|
Dai Y X, Wang L, Wan X C. Frost fatigue and its spring recovery of xylem conduits in ring-porous, diffuse-porous, and coniferous species in situ. Plant Physiology and Biochemistry, 2020, 146, 177- 186.
doi: 10.1016/j.plaphy.2019.11.014 |
|
Davis S D, Sperry J S, Hacke U G. The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany, 1999, 86 (10): 1367- 1372.
doi: 10.2307/2656919 |
|
Domec J C, Gartner B L. Cavitation and water storage capacity in Bole xylem segments of mature and young Douglas-fir trees. Trees, 2001, 15 (4): 204- 214.
doi: 10.1007/s004680100095 |
|
Feild T S, Brodribb T. Stem water transport and freeze-thaw xylem embolism in conifers and angiosperms in a Tasmanian treeline heath. Oecologia, 2001, 127 (3): 314- 320.
doi: 10.1007/s004420000603 |
|
Feng F, Ding F, Tyree M T. Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements. Plant Physiology, 2015, 168 (1): 144- 155.
doi: 10.1104/pp.114.256271 |
|
Hacke U G, Sperry J S. 2001a. Functional and ecological xylem anatomy. Perspectives in Plant Ecology, Evolution and Systematics, 4(2): 97–115. | |
Hacke U G, Sperry J S, Pockman W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 2001b, 126 (4): 457- 461.
doi: 10.1007/s004420100628 |
|
Hacke U G, Stiller V, Sperry J S, et al. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiology, 2001c, 125 (2): 779- 786.
doi: 10.1104/pp.125.2.779 |
|
Hacke UG, Spicer R, Schreiber SG, et al. An ecophysiological and developmental perspectiveon variationinvessel diameter. Plant. Cell & Environment, 2017, 40 (6): 831- 845. | |
Hao G Y, Wheeler J K, Holbrook N M, et al. Investigating xylem embolism formation, refilling and water storage in tree trunks using frequency domain reflectometry. Journal of Experimental Botany, 2013, 64 (8): 2321- 2332.
doi: 10.1093/jxb/ert090 |
|
Lens F, Sperry J S, Christman M A, et al. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 2011, 190 (3): 709- 723.
doi: 10.1111/j.1469-8137.2010.03518.x |
|
Levionnois S, Jansen S, Wandji R T, et al. Linking drought-induced xylem embolism resistance to wood anatomical traits in Neotropical trees. New Phytologist, 2021, 229 (3): 1453- 1466.
doi: 10.1111/nph.16942 |
|
Li Z M, Luo D D, Ibrahim M M, et al. Adaptive strategies to freeze-thaw cycles in branch hydraulics of tree species coexisting in a temperate forest. Plant Physiology and Biochemistry, 2024, 206, 108223.
doi: 10.1016/j.plaphy.2023.108223 |
|
Mayr S, Améglio T. 2016. Freezing stress in tree xylem. Progress in Botany. Cham: Springer International Publishing: 381–414. | |
Niu C Y, Meinzer F C, Hao G Y. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature. Functional Ecology, 2017, 31 (8): 1550- 1560.
doi: 10.1111/1365-2435.12868 |
|
Olson M E, Soriano D, Rosell J A, et al. Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (29): 7551- 7556. | |
Pittermann J, Sperry J. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiology, 2003, 23 (13): 907- 914.
doi: 10.1093/treephys/23.13.907 |
|
Pittermann J, Sperry J S. Analysis of freeze-thaw embolism in conifers. the interaction between cavitation pressure and tracheid size. Plant Physiology, 2006, 140 (1): 374- 382.
doi: 10.1104/pp.105.067900 |
|
Sperry J S, Donnelly J R, Tyree M T. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11(1): 35–40. | |
Sperry J S, Sullivan J E M. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology, 1992, 100 (2): 605- 613.
doi: 10.1104/pp.100.2.605 |
|
Westhoff M, Schneider H, Zimmermann D, et al. The mechanisms of refilling of xylem conduits and bleeding of tall birch during spring. Plant Biology, 2008, 10 (5): 604- 623.
doi: 10.1111/j.1438-8677.2008.00062.x |
|
Yin X H, Hao G Y, Sterck F. A trade-off between growth and hydraulic resilience against freezing leads to divergent adaptations among temperate tree species. Functional Ecology, 2022, 36 (3): 739- 750.
doi: 10.1111/1365-2435.13991 |
|
Yin X H, Sterck F, Hao G Y. Divergent hydraulic strategies to cope with freezing in co-occurring temperate tree species with special reference to root and stem pressure generation. New Phytologist, 2018, 219 (2): 530- 541.
doi: 10.1111/nph.15170 |
|
Zhang W, Feng F, Tyree M T. 2018. Seasonality of cavitation and frost fatigue in Acer mono Maxim. Plant, Cell & Environment, 41(6): 1278–1286. | |
Zanne A E, Pearse W D, Cornwell W K, et al. Functional biogeography of angiosperms: life at the extremes. New Phytologist, 2018, 218 (4): 1697- 1709.
doi: 10.1111/nph.15114 |
[1] | Zhang Haixin;Li Shan;Zhang Shuoxin;Xiong Xiaoyan;Cai Jing;. Relationships between Xylem Vessel Structure and Embolism Vulnerability in Four Populus Clones [J]. , 2013, 49(5): 54-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||