Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (4): 40-51.doi: 10.11707/j.1001-7488.LYKX20220847
Previous Articles Next Articles
Jingyi Xu1,2,3,Zhi Zhang4,Fei Yan1,*,Wenyue Zhang1,3
Received:
2022-11-29
Online:
2024-04-25
Published:
2024-05-23
Contact:
Fei Yan
CLC Number:
Jingyi Xu,Zhi Zhang,Fei Yan,Wenyue Zhang. Leaf Identification Based on GAN-DCNN[J]. Scientia Silvae Sinicae, 2024, 60(4): 40-51.
Table 1
parameters of ShuffleNetV2"
层名称 Layer name | 输出尺寸 Output size | 卷积核大小 Kernel size | 步长 Stride | 重复次数/次 Repeat times |
输入图像 Image | 224×224×3 | |||
卷积层1 Conv1 | 112×112×24 | 3×3 | 2 | 1 |
最大池化层MaxPool | 56×56×24 | 3×3 | 2 | 1 |
残差单元堆叠层2 Stage2 | 28×28×116 | 2 | 1 | |
1 | 3 | |||
残差单元堆叠层3 Stage3 | 14×14×232 | 2 | 1 | |
1 | 7 | |||
残差单元堆叠层4 Stage4 | 7×7×464 | 2 | 1 | |
1 | 3 | |||
卷积层5 Conv5 | 7×7×1024 | 1×1 | 1 | 1 |
全局池化层GlobalPool | 1×1 | 7×7 | ||
全连接层 FC | channels=6 | |||
归一化指数函数 Softmax |
Table 3
Comparison of training effects of different network models"
AlexNet | GoogLeNet | ResNet34 | ShufffeNetV2 | |
训练时长 Training time | 32 min 4 s | 93 min 59 s | 133 min 37 s | 43 min 27 s |
训练最小损失 Minimum training loss | 0.119 | 0.084 | 0.046 | 0.055 |
验证最高精度 Maximum validating accuracy | 99% | 99% | 99.3% | 99.4% |
收敛速度 Rate of convergence | 较快 Fast | 快 Faster | 较快 Fast | 快 Faster |
收敛后稳定性 Convergence stability | 波动 Fluctuant | 小波动 Small fluctuant | 稳定 Stable | 非常稳定 Very stable |
Table 4
Comparison of ShuffleNetV2 training results with different learning rate"
学习率 Learning rate | 0.001 | 0.01 | 0.1 |
训练时长 Training time | 43 min 27 s | 45 min | 49 min 8 s |
训练最小损失 Minimum training loss | 0.055 | 0.02 | 0.02 |
验证最高精度 Maximum validating accuracy | 99.4% | 99.7% | 99.5% |
收敛速度 Rate of convergence | 较快 Fast | 最快 Fastest | 快 Faster |
收敛后稳定性 Convergence stability | 稳定 More stable | 最稳定 Most stable | 较稳定 Stable |
Table 5
Confusion matrix of test set image recognition results"
树种 Tree species | 五角槭 Acer pictum subsp. mono | 肉桂 Cinnamomum cassia | 灰莉 Fagraea ceilanica | 鹅掌楸 Liriodendron chinense | 菜豆树 Radermachera sinica | 鸭脚木 Heptapleurum heptaphyllum | 总和Total |
五角槭 Acer pictum subsp. mono | 111 | 0 | 0 | 0 | 0 | 0 | 111 |
肉桂 Cinnamomum cassia | 0 | 169 | 0 | 0 | 0 | 0 | 169 |
灰莉 Fagraea ceilanica | 0 | 0 | 167 | 0 | 0 | 0 | 167 |
鹅掌楸 Liriodendron chinense | 1 | 0 | 0 | 139 | 0 | 0 | 140 |
菜豆树 Radermachera sinica | 0 | 0 | 0 | 0 | 152 | 0 | 152 |
鸭脚木 Heptapleurum heptaphyllum | 0 | 0 | 1 | 0 | 0 | 137 | 138 |
总和Total | 112 | 169 | 168 | 139 | 152 | 137 | 877 |
准确率Accuracy rate | 99.1% | 100% | 99.4% | 100% | 100% | 100% | 100% |
总体准确率 Total accuracy rate | 99.8% |
Table 6
Comparison of classification results of GAN-DCNN and DCNN on leaves at different growth stage"
树种 Tree species | 分类模型 Classification model | 幼龄叶分类准确率 Classification accuracy of young leaves(%) | 成熟叶分类准确率 Classification accuracy of mature leaves(%) | 衰老叶分类准确率 Classification accuracy of senescent leaves(%) |
五角槭 Acer pictum subsp. mono | GAN-DCNN | 100 | 100 | 100 |
DCNN | 100 | 100 | 100 | |
肉桂Cinnamomum cassia | GAN-DCNN | 100 | 100 | 100 |
DCNN | 100 | 100 | 100 | |
灰莉 Fagraea ceilanica | GAN-DCNN | 100 | 100 | 100 |
DCNN | 100 | 100 | 100 | |
鹅掌楸Liriodendron chinense | GAN-DCNN | 100 | 100 | 100 |
DCNN | 100 | 100 | 100 | |
菜豆树Radermachera sinica | GAN-DCNN | 100 | 100 | 100 |
DCNN | 100 | 100 | 100 | |
鸭脚木Heptapleurum heptaphyllum | GAN-DCNN | 100 | 100 | 100 |
DCNN | 100 | 80 | 60 |
Table 7
Comparison of GAN-DCNN and DCNN on the recognition results of the same leaf"
树种 Tree species | 分类模型 Classification model | 幼龄叶 Young leaves | 识别结果 Classification results(%) | 成熟叶 Mature leaves | 识别结果 Classification results(%) | 衰老叶 Senescent leaves | 识别结果 Classification results(%) |
五角槭 Acer pictum subsp. mono | GAN-DCNN | ![]() | 100 | ![]() | 100 | ![]() | 100 |
DCNN | 97.3 | 84.9 | 87.6 | ||||
肉桂Cinnamomum cassia | GAN-DCNN | ![]() | 100 | ![]() | 99.6 | ![]() | 100 |
DCNN | 99.7 | 55.3 | 98.4 | ||||
灰莉 Fagraea ceilanica | GAN-DCNN | ![]() | 99.9 | ![]() | 100 | ![]() | 100 |
DCNN | 59.3 | 70.3 | 96 | ||||
鹅掌楸Liriodendron chinense | GAN-DCNN | ![]() | 100 | ![]() | 99.9 | ![]() | 100 |
DCNN | 91.9 | 68.4 | 99.8 | ||||
菜豆树Radermachera sinica | GAN-DCNN | ![]() | 100 | ![]() | 100 | ![]() | 100 |
DCNN | 99.9 | 99.9 | 99.5 | ||||
鸭脚木Heptapleurum heptaphyllum | GAN-DCNN | ![]() | 98.9 | ![]() | 99.9 | ![]() | 95 |
DCNN | 78.8 | 83.3 | 87.7 |
曹仰杰, 贾丽丽, 陈永霞, 等. 生成式对抗网络及其计算机视觉应用研究综述. 中国图象图形学报, 2018, 23 (10): 1433- 1449.
doi: 10.11834/jig.180103 |
|
Cao Y J, Jia L L, Chen Y X, et al. Review of computer vision based on generative adversarial networks. Journal of Image and Graphics, 2018, 23 (10): 1433- 1449.
doi: 10.11834/jig.180103 |
|
冯海林, 胡明越, 杨垠晖, 等. 基于树木整体图像和集成迁移学习的树种识别. 农业机械学报, 2019, 50 (8): 235- 242,279.
doi: 10.6041/j.issn.1000-1298.2019.08.025 |
|
Feng H L, Hu M Y, Yang Y H, et al. Tree species recognition based on overall tree image and ensemble of transfer learning. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50 (8): 235- 242,279.
doi: 10.6041/j.issn.1000-1298.2019.08.025 |
|
高 旋, 赵亚凤, 熊 强, 等. 基于迁移学习的树种识别. 森林工程, 2019, 35 (5): 68- 75.
doi: 10.3969/j.issn.1006-8023.2019.05.012 |
|
Gao X, Zhao Y F, Xiong Q, et al. Identification of tree species based on transfer learning. Forest Engineering, 2019, 35 (5): 68- 75.
doi: 10.3969/j.issn.1006-8023.2019.05.012 |
|
李 滨, 敬启超. 改进的卷积神经网络在树种识别中的应用. 森林工程, 2021, 37 (5): 75- 81, 104.
doi: 10.3969/j.issn.1006-8023.2021.05.010 |
|
Li B, Jing Q C. Improved convolutional neural network for tree species recognition. Forest Engineering, 2021, 37 (5): 75- 81, 104.
doi: 10.3969/j.issn.1006-8023.2021.05.010 |
|
刘嘉政, 王雪峰, 王 甜. 基于多特征融合和CNN模型的树种图像识别研究. 北京林业大学学报, 2019, 41 (11): 76- 86. | |
Liu J Z, Wang X F, Wang T. Image recognition of tree species based on multi feature fusion and CNN model. Journal of Beijing Forestry University, 2019, 41 (11): 76- 86. | |
龙满生, 欧阳春娟, 刘 欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别. 农业工程学报, 2018, 34 (18): 194- 201.
doi: 10.11975/j.issn.1002-6819.2018.18.024 |
|
Long M S, Ouyang C J, Liu H, et al. Image recognition of Camellia oleifera diseases based on convolutional neural network & transfer learning. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (18): 194- 201.
doi: 10.11975/j.issn.1002-6819.2018.18.024 |
|
卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述. 数据采集与处理, 2016, 31 (1): 1- 17. | |
Lu H T, Zhang Q C. Applications of deep convolutional neural network in computer vision. Journal of Data Acquisition and Processing, 2016, 31 (1): 1- 17. | |
吕恩辉. 2019. 基于卷积神经网络的图像分类研究. 北京: 中国矿业大学. | |
Lü E H. 2019. Image classification based on convolutional neural network. Beijing: China University of Mining and Technology. [in Chinese] | |
汪美琴, 袁伟伟, 张继业. 生成对抗网络GAN的研究综述. 计算机工程与设计, 2021, 42 (12): 3389- 3395. | |
Wang M Q, Yuan W W, Zhang J Y. Overview of research on generative adversarial network GAN. Computer Engineering and Design, 2021, 42 (12): 3389- 3395. | |
王恩泽, 赵亚凤. 基于多任务持续学习的树种识别. 森林工程, 2022, 38 (1): 67- 75.
doi: 10.3969/j.issn.1006-8023.2022.01.009 |
|
Wang E Z, Zhao Y F. Identification of tree species based on multitask continual learning. Forest Engineering, 2022, 38 (1): 67- 75.
doi: 10.3969/j.issn.1006-8023.2022.01.009 |
|
谢家兴, 陈斌瀚, 彭家骏, 等. 基于改进ShuffleNet V2的荔枝叶片病虫害图像识别. 果树学报, 2023, 40 (5): 1024- 1035. | |
Xie J X, Chen B H, Peng J J, et al. Image recognition of litchi leaf pests and diseases using improved ShuffleNetV2. Journal of Fruit Science, 2023, 40 (5): 1024- 1035. | |
徐志扬, 陈 巧, 陈永富. LiDAR单木分割辅助的无人机影像CNN+EL树种识别. 农业机械学报, 2022, 53 (3): 197- 205. | |
Xu Z Y, Chen Q, Chen Y F. Tree species recognition based on unmanned aerial vehicle image with LiDAR individual tree segmentation aided. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (3): 197- 205. | |
薛 勇, 王立扬, 张 瑜, 等. 基于GoogLeNet深度迁移学习的苹果缺陷检测方法. 农业机械学报, 2020, 51 (7): 30- 35. | |
Xue Y, Wang L Y, Zhang Y, et al. Defect detection method of apples based on GoogLeNet deep transfer learning. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (7): 30- 35. | |
张锡英, 宋宇鹏, 陈 曦, 等. 融合STN和DenseNet的深度学习网络及其应用. 计算机工程与应用, 2019, 55 (17): 131- 136.
doi: 10.3778/j.issn.1002-8331.1901-0094 |
|
Zhang X Y, Song Y P, Chen X, et al. Deep learning network and application based on fused STN and DenseNet. Computer Engineering and Applications, 2019, 55 (17): 131- 136.
doi: 10.3778/j.issn.1002-8331.1901-0094 |
|
张 旭, 周云成, 刘忠颖, 等. 基于改进ShuffleNet V2模型的苹果叶部病害识别及应用. 沈阳农业大学学报, 2022, 53 (1): 110- 118.
doi: 10.3969/j.issn.1000-1700.2022.01.014 |
|
Zhang X, Zhou Y C, Liu Z Y, et al. Identification and application of apple leaf diseases based on improved ShuffleNet V2 model. Journal of Shenyang Agricultural University, 2022, 53 (1): 110- 118.
doi: 10.3969/j.issn.1000-1700.2022.01.014 |
|
赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别. 农业工程学报, 2020, 36 (7): 184- 191.
doi: 10.11975/j.issn.1002-6819.2020.07.021 |
|
Zhao L X, Hou F D, Lv Z C, et al. Image recognition of cotton leaf diseases and pests based on transfer learning. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (7): 184- 191.
doi: 10.11975/j.issn.1002-6819.2020.07.021 |
|
赵世达, 王树才, 白 宇, 等. 基于生成对抗网络与ICNet的羊骨架图像实时语义分割. 农业机械学报, 2021, 52 (2): 329- 339,380.
doi: 10.6041/j.issn.1000-1298.2021.02.032 |
|
Zhao S D, Wang S C, Bai Y, et al. Real-time semantic segmentation of sheep skeleton image based on generative adversarial network and ICNet. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (2): 329- 339,380.
doi: 10.6041/j.issn.1000-1298.2021.02.032 |
|
赵增顺, 高寒旭, 孙 骞, 等. 生成对抗网络理论框架、衍生模型与应用最新进展. 小型微型计算机系统, 2018, 39 (12): 2602- 2606.
doi: 10.3969/j.issn.1000-1220.2018.12.008 |
|
Zhao Z S, Gao H X, Sun Q, et al. Latest development of the theory framework, derivative model and application of generative adversarial nets. Journal of Chinese Computer Systems, 2018, 39 (12): 2602- 2606.
doi: 10.3969/j.issn.1000-1220.2018.12.008 |
|
郑一力, 张 露. 基于迁移学习的卷积神经网络植物叶片图像识别方法. 农业机械学报, 2018, 49 (S1): 354- 359.
doi: 10.6041/j.issn.1000-1298.2018.S0.047 |
|
Zheng Y L, Zhang L. Plant leaf image recognition method based on transfer learning with convolutional neural networks. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49 (S1): 354- 359.
doi: 10.6041/j.issn.1000-1298.2018.S0.047 |
|
Brock A, Donahue J, Simonyan K. 2018. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv: 1809.11096. | |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Communications of the ACM, 2020, 63 (11): 139- 144. | |
He K M, Zhang X Y, Ren S Q, et al. 2016. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 770−778. | |
Karras T, Aittala M, Hellsten J, et al. 2020a. Training generative adversarial networks with limited data. arXiv: 2006.06676. | |
Karras T, Aittala M, Laine S, et al. 2021. Alias-free generative adversarial networks. arXiv: 2106.12423. | |
Karras T, Laine S, Aila T. 2019. A style-based generator architecture for generative adversarial networks. arXiv: 1812.04948. | |
Karras T, Laine S, Aittala M, et al. 2020b. Analyzing and improving the image quality of styleGAN. arXiv: 1912.04958. | |
Kingma D P, Welling M. 2013. Auto-encoding variational bayes. arXiv: 1312.6114. | |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60 (6): 84- 90. | |
Liu B C, Song K P, Zhu Y Z, et al. 2020a. Time: text and image mutual-translation adversarial networks. arXiv: 2005.13192. | |
Liu B, Tan C, Li S Q, et al. A data augmentation method based on generative adversarial networks for grape leaf disease identification. IEEE Access, 2020b, 8, 102188- 102198. | |
Liu B C, Zhu Y Z, Song K P, et al. 2021. Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis. arXiv: 2101.04775. | |
Liu J Z, Wang X F, Wang T. Classification of tree species and stock volume estimation in ground forest images using deep learning. Computers and Electronics in Agriculture, 2019, 166, 105012. | |
Ma N, Zhang X, Zheng H T, et al. 2018. ShuffleNet V2: practical guidelines for efficient CNN architecture design. arXiv: 1807.11164. | |
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556. | |
Szegedy C, Liu W, Jia Y Q, et al. 2014. Going deeper with convolutions. arXiv: 1409.4842. | |
Tran N T, Tran V H, Nguyen N B, et al. 2021. On data augmentation for GAN training. IEEE Transactions on Image Processing. 30, 1882–1897. | |
Xiong Y H, Liang L F, Wang L, et al. 2020. Identification of cash crop diseases using automatic image segmentation algorithm and deep learning with expanded dataset. Computers and Electronics in Agriculture. 177, 105712. | |
Yang H W, Hsu H C, Yang C K, et al. Differentiating between morphologically similar species in genus Cinnamomum (Lauraceae) using deep convolutional neural networks. Computers and Electronics in Agriculture, 2019, 162, 739- 748. |
[1] | Zhikang Hou,Songwei Zeng,Lufeng Mo,Yufeng Zhou. CO2 Concentration in Phyllostachys praecox Stand Inversion Based on GA-BP Neural Network [J]. Scientia Silvae Sinicae, 2022, 58(2): 42-48. |
[2] | Guangqun Zhang,Yingjie Li,Hangjun Wang,Houkui Zhou. Forest Image Classification Based on Fine-Tuning CaffeNet [J]. Scientia Silvae Sinicae, 2020, 56(10): 121-128. |
[3] | Zhiwei Lin,Qilu Ding,Jinfu Liu. Bird Species Identification Based on Deep Convolutional Network with Fusing Global and Local Features [J]. Scientia Silvae Sinicae, 2020, 56(1): 133-144. |
[4] | Li Yingjie, Zhang Guangqun, Wang Hangjun. A Method for Forestry Business Images Classification Based on Auto-Learning Features [J]. Scientia Silvae Sinicae, 2018, 54(5): 78-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||