Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (11): 119-127.doi: 10.11707/j.1001-7488.LYKX20230531
Previous Articles Next Articles
Mengxing Li(),Ziwei Wang,Kuibin Zhou*
Received:
2023-11-03
Online:
2024-11-25
Published:
2024-11-30
Contact:
Kuibin Zhou
E-mail:lucilla_25@163.com
CLC Number:
Mengxing Li,Ziwei Wang,Kuibin Zhou. Modeling the Threats of Forest Fires to the Buildings in the Wildland-Urban Interface[J]. Scientia Silvae Sinicae, 2024, 60(11): 119-127.
Table 2
Critical heat flux of building material ignition (Beyler,2002; Zárate et al.,2008)"
材料 Materials | |
PMMA板(1.29 cm)PMMA board(1.29 cm) | 9 |
毛毯(丙烯酸)Carpet (propenoic acid) | 10 |
薄钢(部分绝缘处理)Thin steel (partially insulated) | 11.7 |
木材 Wood | 12.6 |
纤维保温板 Fiber insulation board | 14 |
沥青瓦 Asphalt shingle | 15 |
胶合板(1.27 cm)Douglas fire particle board (1.27 cm) | 16 |
弹性泡沫(2.54 cm)Foam flexible(2.54 cm) | 16 |
玻璃钢(2.24 mm)Glass reinforced plastic (2.24 mm) | 16 |
硬制板(光泽涂料)Hardboard (gloss paint) | 17 |
碎料板(1.27 cm)Particle board (1.27 cm) | 18 |
地毯(尼龙、羊毛纺)Carpet (nylon, wool blend) | 18 |
石膏墙板 Gypsum board | 18 |
玻璃纤维板 Fiberglass shingle | 21 |
PIR板(5.08 cm)Polyisocyanurate (5.08 cm) | 21 |
薄钢(绝缘处理)Thin steel (insulation treatment) | 25 |
聚碳酸酯板(1.52 mm)Polycarbonate (1.52 mm) | 30 |
Table 3
Classification of heat flux"
热辐射分级Classification of heat flux | 特点Specific characteristics | |
一级 Level 1 | 0≤ | 热流密度较小,火线与建筑间距较大或火焰较小 Low heat flux, the space between fireline and the building is far or the flame is small |
二级 Level 2 | 9≤ | 可能导致建筑燃烧,火线与建筑存在一定间距,火焰与建筑有一定距离 Building may be ignited, there is a certain space between the fireline and the building |
三级 Level 3 | 热流密度较大,火线与建筑间距较小,甚至有接触到火焰的危险 High heat flux, the space between the fireline and the building is close, even a contact with the flame |
Table 5
Classification of firebrand"
飞火颗粒分级 Classification of firebrand | 飞火颗粒数量 Number of firebrands | 特点 Specific characteristics |
一级Level 1 | 0≤ N <2 | 飞火颗粒极小概率引燃建筑材料 Firebrands have low probability of igniting material |
二级 Level 2 | 2≤ N <3 | 飞火颗粒大概率引燃建筑材料 Firebrands have high probability of igniting material |
三级 Level 3 | N ≥3 | 飞火颗粒能引燃建筑材料 Firebrands can ignite material |
Table 6
Classification of building by importance"
一级Level 1 | 二级Level 2 | 三级Level 3 | 四级Level 4 |
乙级或丙级体育建筑;农业建筑;物流建筑Sports buildings of class B or C; agricultural buildings; logistics buildings | 商业建筑;文化建筑;汽车站;一层民用机场航站楼;甲级体育建筑;Ⅱ类汽车库,Ⅱ类修车库;电动汽车充电站;二类高层住宅建筑;单层、低层住宅建筑;不大于300 m2的单层甲、乙类厂房仓库;丙、丁类厂房仓库Commercial buildings; cultural buildings; bus station; one-story airport terminals; sports buildings of class A; type II garages and repair garages; electric vehicle charging station; class II high-rise residential buildings;single-storey, low-rise residential buildings; single-storey class A and B workshop and warehouse with the area less than 300 m2; class C and D workshop and warehouse | 非行政办公单位办公室建筑;铁路车站;特级体育建筑;地铁工程;除省级外广播电影电视建筑;2层及多层式民用机场航站楼;I类汽车库、修车库、高层汽车库;面积大于300 m2的单层甲、乙类厂房仓库、高层多层厂房仓库;一类高层住宅建筑、超高层住宅建筑Building of non-administrative office; railway station; class S sports buildings; subway engineering construction; radio film and television buildings except provincial ones; two-story and multi-story civilian airport terminal; type I garage and repair garage, high-rise car garages; single-story class A and B workshop and warehouse with an area over 300 m2, high-rise and multi-storey workshop and warehouse; class I high-rise residential buildings, super high-rise residential buildings | 老年人照料设施;医疗建筑;科研建筑;教学建筑;省级广播电影电视建筑;消防站;灾时避难建筑;省级及以上防灾指挥调度建筑;行政办公建筑;省级电力建筑Retirement home; medical buildings; research buildings; teaching buildings; provincial radio, film and television buildings; fire station; shelters; disaster command and dispatch buildings of province and nation; administrative office buildings; provincial-level electric power buildings |
Table 7
WUI fire risk levels and characteristics"
风险等级Risk level | 区域特点Regional characteristics |
高High | 火线与建筑间距较小,甚至存在与火焰直接接触的可能,热辐射和飞火颗粒会引燃房体The space between the fireline and the building is close, even a possibly direct contact with the flame, the thermal radiation and firebrands ignite the building |
中等Moderate | 建筑受到一定量的热辐射和飞火颗粒侵袭,会对房体造成一定损害Building is attacked by thermal radiation and firebrands to a certain extent, which would cause damage to the building |
低Low | 火线与建筑间距较大,受到少量热辐射和飞火颗粒侵袭不会造成损伤The space between the fireline and the building is far, and it cannot be damaged by little amount of thermal radiation and firebrands |
侯晓静, 明金科, 秦荣水, 等. 基于随机森林模型的交界域火灾风险分析. 林业科学, 2019, 55 (8): 194- 200. | |
Hou X J, Ming J K, Qin R S, et al. Analysis of the fire risk in wildland-urban interface with random forest model. Scientia Silvae Sinicae, 2019, 55 (8): 194- 200. | |
史志华, 肖从真, 陈 凯, 等. 2019. 建筑结构可靠度设计统一标准 (GB 50068—2018). 北京: 中国建筑工业出版社. | |
Shi Z H, Xiao C Z, Chen K, et al. 2019. Unified standard for reliability design of building structres (GB 50068—2018). Beijing: China Architecture & Building Press. [in Chinese] | |
王明玉, 李 涛, 任云卯, 等. 森林火行为与特殊火行为研究进展. 世界林业研究, 2009, 22 (2): 45- 49. | |
Wang M Y, Li T, Ren Y M, et al. Research advances in forest fire behavior and special forest fire behaviors. World Forestry Research, 2009, 22 (2): 45- 49. | |
Abatzoglou J T, Williams A P, Boschetti L, et al. Global patterns of interannual climate-fire relationships. Global Change Biology, 2018, 24 (11): 5164- 5175.
doi: 10.1111/gcb.14405 |
|
Abo El Ezz A, Boucher J, Cotton-Gagnon A, et al. Framework for spatial incident-level wildfire risk modelling to residential structures at the wildland urban interface. Fire Safety Journal, 2022, 131 (2): 103625. | |
Alexander M E, Cruz M G. Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height. International Journal of Wildland Fire, 2012, 21 (2): 95- 113.
doi: 10.1071/WF11001 |
|
Bakhtiyari S, Khalili R, Hosseinpour M. A risk-based approach for assessment and improvement of fire safety in existing buildings. Asian Journal of Civil Engineering, 2022, 23 (3): 391- 404.
doi: 10.1007/s42107-022-00430-2 |
|
Beyler C. 2002. Engineering guide: piloted ignition of solid materials under radiant exposure, Bethesda: Society of Fire Protection Engineers. | |
Butler B, Cohen J. Firefighter safety zones: a theoretical model based on radiative heating. International Journal of Wildland Fire, 1998, 8 (2): 73- 77.
doi: 10.1071/WF9980073 |
|
Butler B W, Finney M A, Andrews P L, et al. A radiation-driven model for crown fire spread. Canadian Journal of Forest Research, 2004, 34 (8): 1588- 1599.
doi: 10.1139/x04-074 |
|
Byram G M. 1959. Combustion of forest fire//Davis K P. Fores fire: control and use. New York: McGraw-Hil, 61−89. | |
Dupuy J. Testing two radiative physical models for fire spread through porous forest fuel beds. Combustion Science and Technology, 2000, 155 (1): 149- 180. | |
Haight R G, Cleland D T, Hammer R B, et al. Assessing fire risk in the wildland-urban interface. Journal of Forestry, 2004, 102 (7): 41- 48.
doi: 10.1093/jof/102.7.41 |
|
Khastagir A. Fire frequency analysis for different climatic stations in Victoria, Australia. Natural Hazards, 2018, 93 (2): 787- 802.
doi: 10.1007/s11069-018-3324-x |
|
Kuo S, Marshall J, Rowberry R. 2022. The cambridge handbook of disaster law and policy//Stephen R. Wildfire federalism: a framework for local government participation in disaster planning. London: Cambridge University Press, 240−249. | |
Lampin-Maillet C, Jappiot M, Long M, et al. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. Journal of Environmental Management, 2010, 91 (3): 732- 741.
doi: 10.1016/j.jenvman.2009.10.001 |
|
Liu N, Lei J, Gao W, et al. Combustion dynamics of large-scale wildfires. Proceedings of the Combustion Institute, 2021, 38 (1): 157- 198.
doi: 10.1016/j.proci.2020.11.006 |
|
Lopes Rúben F R, Rodrigues João Paulo C, Lopes C A, et al. Resilience of industrial buildings to wildland-urban interface fires. IOP Conference Series: Earth and Environmental Science, 2022, 1101 (2): 022034.
doi: 10.1088/1755-1315/1101/2/022034 |
|
Mahmoud H, Chulahwat A. Assessing wildland-urban interface fire risk. Royal Society Open Science, 2020, 7 (8): 201183.
doi: 10.1098/rsos.201183 |
|
Maranghides A, Mell W. Framework for addressing the national wildland urban interface fire problem-determining fire and ember exposure zones using a WUI hazard scale, National Institute of Standards and Technology. Gaithersburg, 2013, MD, 1- 26. | |
Meerpoe K, Tihay V, Santoni P. Determination of the critical conditions leading to the ignition of decking slabs by flaming firebrands. Fire Safety Journal, 2021, 120, 103017.
doi: 10.1016/j.firesaf.2020.103017 |
|
Modest M F, Mazumder S. 2022. Chapter 4 - view factors. Radiative heat transfer (fourth edition). New York: Academic Press, 127−159. | |
Pagni P J, Peterson T G. Flame spread through porous fuels. Symposium (International) on Combustion, 1973, 14 (1): 1099- 1107.
doi: 10.1016/S0082-0784(73)80099-2 |
|
Park H, Nam K, Lim H. Is critical infrastructure safe from wildfires? A case study of wildland-industrial and-urban interface areas in south Korea. International Journal of Disaster Risk Reduction, 2023, 95, 103849.
doi: 10.1016/j.ijdrr.2023.103849 |
|
Roos C I, Swetnam T W, Ferguson T J, et al. 2021. Native American fire management at an ancient wildland-urban interface in the southwest United States. Proceedings of the National Academy of Sciences of the United States of America, 118(4): e201873311. | |
Rossi J L, Simeoni A, Moretti B, et al. An analytical model based on radiative heating for the determination of safety distances for wildland fires. Fire Safety Journal, 2011, 46 (8): 520- 527.
doi: 10.1016/j.firesaf.2011.07.007 |
|
Rossi J L, Chatelon F J, Marcelli T. 2020. Fire intensity//Manzwllo S L. Encyclopedia of wildfires and wildland-urban interface (WUI) fires. Cham: Springer, 391−397. | |
Thomas J C, Mueller E V, Santamaria S, et al. Investigation of firebrand generation from an experimental fire: development of a reliable data collection methodology. Fire Safety Journal, 2017, 91, 864- 871.
doi: 10.1016/j.firesaf.2017.04.002 |
|
Thompson M P, Calkin D E. Uncertainty and risk in wildland fire management: a review. Journal of Environmental Management, 2011, 92 (8): 1895- 1909.
doi: 10.1016/j.jenvman.2011.03.015 |
|
Wickramasinghe A, Khan N, Filkov A, et al. Physics-based modelling for mapping firebrand flux and heat load on structures in the wildland–urban interface. International Journal of Wildland Fire, 2023, 32 (11): 1576- 1599.
doi: 10.1071/WF22119 |
|
Zárate L, Arnaldos J, Casal J. Establishing safety distances for wildland fires. Fire Safety Journal, 2008, 43 (8): 565- 575.
doi: 10.1016/j.firesaf.2008.01.001 |
[1] | Jibin Ning,Daotong Geng,Hongzhou Yu,Xueying Di,Guang Yang. Experiment on Spotting Ignition of Larix gmelinii Forest Based on Logistic Regression [J]. Scientia Silvae Sinicae, 2021, 57(7): 121-130. |
[2] | Sun Zhiqaing, Zhao Yang, Ma Zhigang, Du Hongyan, Zhu Jingle, Wang Hao, Chen Junhua, Fu Jianmin. Risk Grading for Damage of the Defoliator Orthosia songi (Lepidoptera: Noctuidae) [J]. Scientia Silvae Sinicae, 2016, 52(7): 78-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||