Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (12): 125-136.doi: 10.11707/j.1001-7488.LYKX20230447
• Research papers • Previous Articles Next Articles
Zhuhua Wu1(),Juan Song2(
),Shulin Zhu3,Xing Zhao4,Xuexiang Yang4,Jiahong Ren5,Fengmao Chen1,*(
)
Received:
2023-09-28
Online:
2023-12-25
Published:
2024-01-08
Contact:
Fengmao Chen
E-mail:nlwuzhu@njfu.edu.cn;Sjj818388@outlook.com;cfengmao@126.com
CLC Number:
Zhuhua Wu,Juan Song,Shulin Zhu,Xing Zhao,Xuexiang Yang,Jiahong Ren,Fengmao Chen. Effects of Plant Growth-Promoting Microorganisms on Rhizosphere Microbial Community and the Leaf Pigment Composition of Liquidambar formosana[J]. Scientia Silvae Sinicae, 2023, 59(12): 125-136.
Table 1
Soil physicochemical properties in the rhizosphere of Liquidambar formosana grown in field soil asaffected by the inoculated microorganism"
处理Treatment | 全氮含量 Total nitrogen content /(g·kg?1) | 全磷含量 Total phosphorus content /(g·kg?1) | 全钾含量 Total potassium content /(g·kg?1) | 有机质含量 Organic matter content /(g·kg?1) | 有效磷含量 Available phosphorus content /(mg·kg?1) | 含水率 Water content (%) | pH |
CK | 0.82±0.03b | 0.114±0.00 b | 14.25±0.09a | 7.14 ±0.18c | 0.22±0.02d | 2.5±0.2b | 6.88±0.12d |
NJ2D | 0.94±0.05ab | 0.116 ±0.002ab | 13.99±0.65a | 9.78 ±0.26b | 0.78 ±0.02b | 2.8±0.1ab | 8.40±0.08a |
BJ04 | 0.88±0.06b | 0.120 ±0.001a | 14.93±0.42a | 13.21±0.99a | 1.05 ±0.03a | 3.0±0.1a | 7.22 ±0.03c |
NJ2D+BJ04 | 1.09±0.07a | 0.119 ±0.001ab | 13.96±0.62a | 13.88 ±0.67a | 0.31 ±0.03c | 3.1±0.5a | 7.88±0.05b |
Fig.2
The soil bacterial diversity in L. formosana rhizosphere affected by the inoculated microorganism a: Venn plot of the sample; b: Cluster diagram of species abundance at the top 20 bacterial phylum level; c: Co occurrence networks analysis diagram, dots of the same color represent the same doors. Lines between nodes (red positive correlation, blue negative correlation); d, e: Bar chart of relative abundance of species at the top 20 genus level."
Table 2
Diversity index of the soil microbes in the rhizosphere under L. formosana relative to variety"
项目Item | 多样性指数Diversity | CK | NJ2D | BJ04 | NJ2D+BJ04 |
细菌 Bacteria | chao1 | 3 345.01 ±105.89b | 4 335.96 ±158.30a | 4 239.23 ±78.57 a | 4 379.43 ±266.44 a |
Shannon | 9.24 ±0.05b | 9.69 ±0.09a | 9.54 ±0.10 a | 9.68 ±0.11 a | |
goods_coverage | 0.987 ±0.000a | 0.981 ±0.001b | 0.982 ±0.001 b | 0.986 ±0.001a | |
AMF | chao1 | 286.93 ±1.08a | 227.25 ±10.42c | 251.07 ±5.06 b | 232.32 ±8.20 bc |
Shannon | 3.62 ±0.03b | 3.40 ±0.06c | 4.03 ±0.04 a | 3.89 ±0.02 a | |
goods_coverage | 0.999 ±0.000a | 0.999 ±0.000a | 0.999 ±0.000 a | 0.999 ±0.000 a |
Fig.3
The soil AMF diversity in the rhizosphere of L. formosana affected by the inoculated microorganism a, b: Bar chart of relative abundance of species at the top 10 genus level; c: Venn plots of each sample; d: Co occurrence networks analysis chart, dots of the same color represent the same genus. The lines between nodes (red positive correlation, blue negative correlation)."
Table 3
Correlation analysis of soil microbial community, soil chemical and physical properties, and leaf pigments, as determined by Pearson correlation analysis"
指标Item | pH | 含水率 Water content | 有效磷含量 Available phosphorus | 有机质含量 Organic matter | 全钾含量 Total potassium |
土壤全磷含量 Total phosphorus content | ?0.323 | ?0.072 | 0.214 | 0.495 | 0.235 |
土壤全氮含量 Total nitiogen content | ?0.037 | 0.296 | ?0.351 | 0.632** | 0.497 |
类胡萝卜素含量 Carotenoids content | ?0.683** | 0.174 | 0.662** | 0.160 | 0.168 |
花青素含量 Anthocyanin content | 0.087 | 0.128 | ?0.491 | 0.477 | ?0.203 |
叶绿素a含量 Chlorophyll a content | ?0.654* | 0.207 | 0.649** | 0.242 | 0.136 |
叶绿素b含量 Chlorophyll b content | ?0.637** | 0.211 | 0.654* | 0.252 | 0.128 |
总叶绿素含量 Total chlorophyll content | ?0.650** | 0.208 | 0.650* | 0.245 | 0.134 |
chao1(Bacteria) | 0.538 | 0.014 | 0.073 | 0.042 | 0.030 |
chao1(AMF) | ?0.789** | ?0.125 | 0.175 | ?0.298 | 0.011 |
江 聂, 姜卫兵, 翁忙玲, 等. 枫香的园林特性及其开发利用. 江西农业学报, 2008, 20(12), 46- 49.
doi: 10.19386/j.cnki.jxnyxb.2008.12.016 |
|
Jiang N, Jiang W B, Weng M L, et al. Landscape characters of Liquidambar formosana and its exploitation. Acta Agriculturae Jiangxi, 2008, 20(12), 46- 49.
doi: 10.19386/j.cnki.jxnyxb.2008.12.016 |
|
王冬雪, 孙海菁, 德永军, 等. 不同光质处理对枫香幼苗叶色的影响. 林业科学研究, 2019, 32(4), 158- 164.
doi: 10.13275/j.cnki.lykxyj.2019.04.021 |
|
Wang D X, Sun H Q, De Y J, et al. Change of leaf color of Liquidambar formosana seedlings under different light quality treatments. Forest Research, 2019, 32(4), 158- 164.
doi: 10.13275/j.cnki.lykxyj.2019.04.021 |
|
宋 娟, 吴祝华, 翁行良, 等. 2021. 枫香根际丛枝菌根真菌多样性. 林业科学, 57(9): 98−109. | |
Song J, Wu Z H, Weng X L, et al. 2021. Diversity of arbuscular mycorrhizal fungi in rhizosphere of Liquidambar formosana. Scientia Silvae Sinicae, 57(9): 98−109. | |
宋 娟, 徐国芳, 赵 邢, 等. 枫香根际解有机磷细菌筛选及其促生效应(英文). 南京林业大学学报(自然科学版), 2020, 44 (3): 95- 104. | |
Song J, Xu G F, Zhao X, et al. Screening of indigenous phosphate-solubilizing bacteria from Liquidambar formosana Hance rhizosphere and its potential applications for improving plant growth. Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44 (3): 95- 104. | |
Augé R M, Toler H D, Saxton A M 2014. Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Frontiers in Plant Science, 5:562. | |
Biermann B, Linderman R G. Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytologist, 1983, 95(1), 97- 105.
doi: 10.1111/j.1469-8137.1983.tb03472.x |
|
Bonfante P, Genre A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nature Communications, 2010, 1, 48.
doi: 10.1038/ncomms1046 |
|
Caporaso J G, Lauber C L, Walters W A, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 2012, 6(8), 1621- 1624.
doi: 10.1038/ismej.2012.8 |
|
Catão E C P, Lopes F A C, Araújo J F, et al. Soil acidobacterial 16S rRNA gene sequences reveal subgroup level differences between Savanna-Like Cerrado and Atlantic Forest Brazilian Biomes. International Journal of Microbiology, 2014, 2014, 156341. | |
Chen M, Arato M, Borghi L, et al. 2018. Beneficial services of arbuscular mycorrhizal fungi - from ecology to application. Frontiers in Plant Science, 9:1270. | |
Colanero S, Perata P, Gonzali S 2018. The atroviolacea gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants. Frontiers in Plant Science, 9:830. | |
Daniell T J, Husband R, Fitter A H, et al. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiology Ecology, 2001, 36(2/3), 203- 209.
doi: 10.1111/j.1574-6941.2001.tb00841.x |
|
Deng L, Wang K, Li J, et al. Effect of soil moisture and atmospheric humidity on both plant productivity and diversity of native grasslands across the Loess Plateau, China. Ecological Engineering, 2016, 94, 525- 531.
doi: 10.1016/j.ecoleng.2016.06.048 |
|
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10), 996- 998.
doi: 10.1038/nmeth.2604 |
|
Güsewell S. 2004. N : P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164(2): 243−266. | |
Guyonnet J P, Vautrin F, Meiffren G, et al. 2017. The effects of plant nutritional strategy on soil microbial denitrification activity through rhizosphere primary metabolites. FEMS Microbiology Ecology, 93(4):10. | |
Hu J, Chen G, Zhang Y, et al. Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plant Physiology and Biochemistry, 2015, 97, 304- 312.
doi: 10.1016/j.plaphy.2015.10.019 |
|
Islam R, Trivedi P, Madhaiyan M, et al. Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long-term fertilizer management experiment. Biology and Fertility of Soils, 2010, 46(3), 261- 269.
doi: 10.1007/s00374-009-0425-4 |
|
Jeanbille M, Buée M, Bach C, et al. Soil parameters drive the structure, diversity and metabolic potentials of the bacterial communities across temperate beech forest soil sequences. Microbial Ecology, 2016, 71(2), 482- 493.
doi: 10.1007/s00248-015-0669-5 |
|
Kõljalg U, Nilsson R H, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 2013, 22(21), 5271- 5277.
doi: 10.1111/mec.12481 |
|
Leff J W, Jones S E, Prober S M, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proceedings of the National Academy of Sciences, 2015, 112(35), 10967- 10972.
doi: 10.1073/pnas.1508382112 |
|
Li Y, Fang J, Qi X, et al. Combined analysis of the fruit metabolome and transcriptome reveals candidate genes involved in flavonoid biosynthesis in Actinidia arguta. International Journal of Molecular Sciences, 2018, 19(5), 1471.
doi: 10.3390/ijms19051471 |
|
Mendes R, Garbeva P, Raaijmakers J M 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms . FEMS Microbiology Reviews, 37(5): 634−663. | |
Misra N, Gupta G, Jha P N 2012. Assessment of mineral phosphate-solubilizing properties and molecular characterization of zinc-tolerant bacteria . Journal of Basic Microbiology, 52(5): 549−558. | |
Msimbira L A, Smith D L . 2020. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses . Frontiers in Sustainable Food Systems, 4:106. | |
Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate//: US Department of Agriculture. 1954. (2022−10−10). https://www.semanticscholar.org/paper/Estimation-of-available-phosphorus-in-soils-by-with-Olsen/681a42d80a5dd02d2917a7ec4af079916c576f29. | |
Pellegrino E, Bedini S, Avio L, et al. Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biology and Biochemistry, 2011, 43(2), 367- 376.
doi: 10.1016/j.soilbio.2010.11.002 |
|
Page A, Miller R, Keeney D . 1982. Methods of soil analysis. Part 2. Chemical and microbiological properties[C]. Madison, WI, USA: Soil Science Society of America: 539−594. | |
Petsch d K 2016. Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology, 101(3/4): 113−122. | |
Pollet T, HumberT J F, Tadonléké R D .2014. Planctomycetes in lakes: poor or strong competitors for phosphorus? Applied and Environmental Microbiology, 80(3): 819-828. | |
Porra R J, Thompson W A, Kriedemann P E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics [J], 975(3): 384−394. | |
Qi T, Song S, Ren Q, et al. 2011. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. The Plant Cell , 23(5): 1795−1814. | |
Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2012, 41(database issue), 590- 596.
doi: 10.1093/nar/gks1219 |
|
Ren C, Zhao F, Kang D, et al. Linkages of C: N: P stoichiometry and bacterial community in soil following afforestation of former farmland. Forest Ecology and Management, 2016, 376, 59- 66.
doi: 10.1016/j.foreco.2016.06.004 |
|
Rosell R, Gasparoni J, Lal J, et al. 2001. Assessment methods for soil carbon[M]. Florida: Lewis Publishers: 349−359. | |
Selvakumar G, Mohan M, Kundu S, et al. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Letters in Applied Microbiology, 2008, 46(2), 171- 175. | |
Shekhar N, Bhattacharya D, Kumar D, et al. Biocontrol of wood-rotting fungi with Streptomyces violaceusniger XL-2. Canadian Journal of Microbiology, 2006, 52(9), 805- 808.
doi: 10.1139/w06-035 |
|
Siddiqui Z A, Akhtar M S. Effects of fertilizers, AM fungus and plant growth promoting rhizobacterium on the growth of tomato and on the reproduction of root-knot nematode Meloidogyne incognita. Journal of Plant Interactions, 2008, 3(4), 263- 271.
doi: 10.1080/17429140802272717 |
|
Song Y, Wu K, Dhaubhadel S, et al. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity. Biochem Biophys Res Commun, 2010, 396 (2): 187- 192.
doi: 10.1016/j.bbrc.2010.03.119 |
|
Stahl W, Sies H. Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2005, 1740(2), 101- 107.
doi: 10.1016/j.bbadis.2004.12.006 |
|
Ting A, Meon S, Kadir J, et al. Induction of host defence enzymes by the endophytic bacterium Serratia marcescens, in banana plantlets. Pans Pest Articles & News Summaries, 2010, 56(2): 183−188. | |
Wang M, Zheng Q, Shen Q, et al. The critical role of potassium in plant stress response. International Journal of Molecular Sciences, 2013, 14(4), 7370- 7390.
doi: 10.3390/ijms14047370 |
|
Wani S P, Gopalakrishnan S. Plant growth-promoting microbes for sustainable agriculture[C]// Sayyed R Z, Reddy M S, Antonius S. Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture. Singapore: Springer Singapore, 2019: 19−45. 10.1007/978-981-13-6790-8_2. | |
Willis A, Rodrigues B F, Harris P J C. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32(1), 1- 20.
doi: 10.1080/07352689.2012.683375 |
|
Xiong W, Zhao Q, Zhao J, et al. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing. Microbial Ecology, 2015, 70(1), 209- 218.
doi: 10.1007/s00248-014-0516-0 |
|
Xu L, Han Y, Yi M, et al. Shift of millet rhizosphere bacterial community during the maturation of parent soil revealed by 16S rDNA high-throughput sequencing. Applied Soil Ecology, 2019, 135, 157- 165.
doi: 10.1016/j.apsoil.2018.12.004 |
|
Yamada T, Sekiguchi Y. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi 'Subphylum I' with natural and biotechnological relevance. Microbes and Environments, 2009, 24 (3): 205- 216. | |
Yang Y, Wang N, Guo X, et al. Comparative analysis of bacterial community structure in the rhizosphere of maize by high-throughput pyrosequencing. PLoS ONE, 2017, 12(5), e0178425.
doi: 10.1371/journal.pone.0178425 |
[1] | Sha Zhou,Huanfei Ma,Jieying Wang,Chengjie Ren,Yaoxin Guo,Jun Wang,Fazhu Zhao. Latitudinal Distribution of Forest Soil Microbial Biomass Carbon and Its Affecting Factors in China [J]. Scientia Silvae Sinicae, 2022, 58(2): 49-57. |
[2] | Juan Song,Zhuhua Wu,Xingliang Weng,Xing Zhao,Xuexiang Yang,Ronglin Tang,Bing Cao,Yu Wu,Houyu Shen,Jiahong Ren,Fengmao Chen. Diversity of Arbuscular Mycorrhizal Fungi in Rhizosphere of Liquidambar formosana [J]. Scientia Silvae Sinicae, 2021, 57(9): 98-109. |
[3] | Wenjie Hu,Hongdong Pang,Xingyi Hu,Faxin Huang,Jiawei Yang,Lijun Xu,Miao Gong. Effects of Bamboo Forest Density and Fertilizer Types on the Yield and Quality of Phyllostachys edulis Bamboo Shoots and Soil Physicochemical Properties in Mufu Mountain Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 32-42. |
[4] | Wenjun Hou,Ming Zou,Baofu Li,Yuanchun Yu. Effect of Glyphosate on Soil Physicochemical Properties of Eucalyptus Plantations [J]. Scientia Silvae Sinicae, 2020, 56(8): 20-26. |
[5] | Qin Yuan, Pan Xueyu, Jin Wei, Chen Lianqing, Yuan Zhilin. Comparison of Four Extraction Methods of Soil Microbiome in Poplar Plantation [J]. Scientia Silvae Sinicae, 2018, 54(9): 169-176. |
[6] | Wang Xinyu;Wang Qingcheng. Effects of the Close-to-Nature Cultivation of Larix olgensis and Fraxinus mandshurica on the Soil Physiochemical Properties [J]. Scientia Silvae Sinicae, 2008, 44(12): 21-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||