Scientia Silvae Sinicae ›› 2021, Vol. 57 ›› Issue (1): 1-11.doi: 10.11707/j.1001-7488.20210101
Previous Articles Next Articles
Lu Yang1,2,Jinsong Wang2,Bo Zhao1,Xiuhai Zhao1,*
Received:
2019-10-28
Online:
2021-01-01
Published:
2021-03-10
Contact:
Xiuhai Zhao
CLC Number:
Lu Yang,Jinsong Wang,Bo Zhao,Xiuhai Zhao. Effects of Long-Term Nitrogen Application on Soil Respiration and Its Components in Warm-Temperate Forest of Pinus tabulaeformis[J]. Scientia Silvae Sinicae, 2021, 57(1): 1-11.
Table 1
Stand characteristics and soil (0-10 cm) properties of P. tabulaeformis forest plots of various treatments"
处理 Treatment | 林龄 Forest age/a | 密度 Density/hm-2 | 平均胸径 Mean DBH/cm | 海拔 Elevation/m | 土壤 pHSoil pH | 有机碳含量 Orgnic carbon content/(g·kg-1) | 全氮含量 Total nitrogen content/(g·kg-1) |
CK | 80 | 1 267 | 25.2 | 1 680 | 6.91 | 30.75 | 1.17 |
LN | 80 | 1 567 | 24.6 | 1 680 | 6.79 | 31.57 | 1.37 |
MN | 80 | 1 208 | 24.1 | 1 680 | 6.86 | 32.45 | 1.34 |
HN | 80 | 1 225 | 23.9 | 1 680 | 6.61 | 29.04 | 1.35 |
Table 2
F-values of repeated-measured ANOVA for soil respiration rate, heterotrophic respiration rate, autotrophic respiration rate, soil temperature and soil moisture."
项目 Item | df | 土壤呼吸速率 Soil respirationrate | 异养呼吸速率 Heterotrophic respirationrate | 自养呼吸速率 Autotrophic respirationrate | 切根 Trenched | 不切根 Untrenched | |||
温度 Temperature | 湿度 Moisture | 温度 Temperature | 湿度 Moisture | ||||||
月份Month | 16 | 0.934 | 11.515*** | 15.336*** | 0.152 | 10.511*** | 0.252 | 4.105* | |
氮处理Nitrogen treatment | 3 | 7.098*** | 10.143*** | 1.245 | 0.025 | 1.83 | 0.161 | 1.754 | |
月份×氮处理Month×nitrogen treatment | 48 | 4.658*** | 11.726*** | 6.986*** | 0.075 | 5.425*** | 0.196 | 2.733* |
Fig.2
Mean values of soil respiration rate, heterotrophic respiration rate, and autotrophic respiration rate under different nitrogen addition levels in growing season from 2016 to 2018 Different lowercase letters represent significant differences between different nitrogen treatments(P < 0.05)."
Table 3
Parameter of models for autotrophic respiration rate and heterotrophic respiration rate as a function of soil temperature(T), moisture(W), and both temperature & moisture(T, W)"
模型 Model | 参数 Parameter | 自养呼吸速率Autotrophic respiration rate | 异养呼吸速率Heterotrophic respiration rate | |||||||
CK | LN | MN | HN | CK | LN | MN | HN | |||
R=a1eb1T | a1 | 0.310 | 0.164 | 0.207 | 0.214 | 0.494 | 0.522 | 0.455 | 0.431 | |
b1 | 0.078 | 0.107 | 0.105 | 0.085 | 0.100 | 0.080 | 0.075 | 0.082 | ||
P | <0.05 | <0.001 | <0.001 | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | ||
R2 | 0.197 | 0.390 | 0.396 | 0.329 | 0.701 | 0.767 | 0.630 | 0.733 | ||
Q10 | 2.190 | 2.901 | 2.858 | 2.340 | 2.724 | 2.226 | 2.123 | 2.270 | ||
R=a2+b2W | a2 | 0.858 | 1.266 | 1.546 | 0.168 | 2.626 | 1.673 | 1.681 | 2.673 | |
b2 | -0.001 | -0.022 | -0.029 | 0.018 | -0.026 | -0.007 | -0.018 | -0.048 | ||
P | 0.982 | 0.219 | 0.366 | 0.158 | 0.367 | 0.673 | 0.182 | <0.01 | ||
R2 | 0.001 | 0.022 | 0.012 | 0.029 | 0.012 | 0.003 | 0.026 | 0.136 | ||
R=a3eb3TWc | a3 | 1.661 | 0.509 | 4.301 | 0.008 | 0.219 | 0.254 | 0.222 | 0.362 | |
b3 | 0.101 | 0.104 | 0.101 | 0.083 | 0.103 | 0.082 | 0.078 | 0.083 | ||
c | -2.491 | -0.333 | -0.916 | 1.021 | 0.232 | 0.208 | 0.208 | 0.049 | ||
P | <0.05 | <0.001 | <0.001 | <0.01 | <0.001 | <0.001 | <0.001 | <0.001 | ||
R2 | 0.287 | 0.420 | 0.374 | 0.399 | 0.716 | 0.781 | 0.649 | 0.745 |
Table 4
Effects of chronic nitrogen addition on soil chemical properties, fine root biomass, litter nitrogen and phosphorus contents, and fine root nitrogen and phosphorus contents in the P. tabulaeformis forest"
项目Item | CK | LN | MN | HN |
土壤pH Soil pH | 6.36±0.20a | 6.29±0.19ab | 5.99±0.19ab | 5.58±0.48b |
土壤有机碳含量Soil organic carbon content/(g·kg -1) | 32.59±4.01a | 33.48±3.21a | 37.02±3.99a | 35.86±6.34a |
土壤全氮含量Soil total nitrogen content/(g·kg -1) | 1.61±0.21a | 1.79±0.16a | 2.01±0.08a | 1.84±0.22a |
土壤全磷含量Soil total phosphorus content/(g·kg -1) | 0.27±0.08a | 0.30±0.04a | 0.33±0.07a | 0.30±0.05a |
土壤微生物生物量碳含量Soil microbial biomass carbon content/(mg·kg -1) | 498.28±24.39a | 442.08±14.62b | 426.22±33.93b | 425.02±17.34b |
细根生物量Fine root biomass/(g·m -2) | 85.88±7.60a | 89.14±10.39a | 88.33±9.67a | 81.00±8.82a |
凋落物氮含量Litter nitrogen content/(g·kg -1) | 1.61±0.05a | 1.61±0.07a | 1.55±0.07a | 1.44±0.09a |
凋落物磷含量Litter phosphorus content/(g·kg -1) | 0.22±0.02a | 0.26±0.03a | 0.27±0.02a | 0.21±0.02a |
细根氮含量Fine root nitrogen content/(g·kg -1) | 1.38±0.26a | 1.35±0.03a | 1.80±0.12a | 1.97±0.18a |
细根磷含量Fine root phosphorus content/(g·kg -1) | 2.73±0.10a | 3.17±0.01a | 3.07±0.27a | 2.94±0.28a |
Table 5
Pearson correlations between soil respiration and its components with soil chemical properties, fine root biomass, litter nitrogen and phosphorus contents, fine root nitrogen and phosphorus contents after 10-year N addition n=12"
项目Item | 土壤呼吸速率Soil respiration rate | 异养呼吸速率Heterotrophic respiration rate | 自养呼吸速率Autotrophic respiration rate |
土壤pH Soil pH | 0.55 | 0.42 | 0.47 |
土壤有机碳含量Soil organic carbon content | 0.32 | 0.01 | 0.52 |
土壤全氮含量Soil total nitrogen content | 0.20 | -0.19 | 0.57 |
土壤全磷含量Soil total phosphorus content | 0.35 | 0.24 | 0.33 |
土壤微生物生物量碳含量Soil microbial biomass carbon content | 0.79 ** | 0.78 ** | 0.45 |
细根生物量Fine root biomass | 0.53 | 0.14 | 0.76 ** |
凋落物氮含量Litter nitrogen content | 0.62 * | 0.48 | 0.52 |
凋落物磷含量Litter phosphorus content | 0.18 | -0.13 | 0.44 |
细根氮含量Fine root nitrogen content | -0.21 | -0.50 | 0.22 |
细根磷含量Fine root phosphorus content | -0.13 | -0.20 | 0.01 |
常建国, 刘世荣, 史作民, 等. 锐齿栎林土壤呼吸对土壤水热变化的响应. 林业科学, 2006, 42 (12): 21- 27. | |
Chang J G , Liu S R , Shi Z M , et al. Response of soil respiration to soil temperature and moisture regimes in the natural forest of Quercus aliena var.acuteserrata. Scientia Silvae Sinicae, 2006, 42 (12): 21- 27. | |
陈平, 赵博, 闫子超, 等. 太岳山油松人工林土壤呼吸对模拟氮沉降的短期响应. 生态学报, 2018, 38 (22): 8184- 8193. | |
Chen P , Zhao B , Yan Z C , et al. Short-term response of soil respiration to simulated nitrogen deposition in a Pinus tabulaeformis plantation on Taiyue Mountain, China. Acta Ecological Sinica, 2018, 38 (22): 8184- 8193. | |
范珍珍, 王鑫, 王超, 等. 整合分析氮磷添加对土壤酶活性的影响. 应用生态学报, 2018, 29 (4): 1266- 1272. | |
Fan Z Z , Wang X , Wang C , et al. Effect of nitrogen and phosphorus addition on soil enzyme activities: a meta-analysis. Chinese Journal of Applied Ecology, 2018, 29 (4): 1266- 1272. | |
李化山, 汪金松, 赵秀海, 等. 模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响. 生态学杂志, 2014, 33 (4): 857- 866. | |
Li H S , Wang J S , Zhao X H , et al. Effects of litter removal on soil respiration under simulated nitrogen deposition in a Pinus tabulaeformis forest in Taiyue Mountain, China. Chinese Journal of Ecology, 2014, 33 (4): 857- 866. | |
刘彩霞, 焦如珍, 董玉红, 等. 应用PLFA方法分析氮沉降对土壤微生物群落结构的影响. 林业科学, 2015, 51 (6): 155- 162. | |
Liu C X , Jiao R Z , Dong Y H , et al. Effect of nitrogen deposition on soil microbial community structure determined with the PLFA method. Scientia Silvae Sinicae, 2015, 51 (6): 155- 162. | |
刘星, 汪金松, 赵秀海. 模拟氮沉降对太岳山油松林土壤酶活性的影响. 生态学报, 2015, 35 (14): 4613- 4624. | |
Liu X , Wang J S , Zhao X H . Effects of simulated nitrogen deposition on the soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain. Acta Ecological Sinica, 2015, 35 (14): 4613- 4624. | |
刘修元, 杜恩在, 徐龙超, 等. 落叶松原始林树木生长对氮添加的响应. 植物生态学报, 2015, 39 (5): 433- 441. | |
Liu X Y , Du E Z , Xu L C , et al. Response of tree growth to nitrogen addition in a Larix gmelinii primitive forest. Chinese Journal of Plant Ecology, 2015, 39 (5): 433- 441. | |
汪金松, 范娟, 赵秀海, 等. 太岳山油松人工林土壤呼吸组分及其影响因子. 林业科学, 2013, 49 (2): 1- 7.
doi: 10.3969/j.issn.1672-8246.2013.02.001 |
|
Wang J S , Fan J , Zhao X H , et al. Soil respiration components and its controlling factors in a Pinus tabulaeformis plantation in Taiyue Mountain, China. Scientia Silvae Sinicae, 2013, 49 (2): 1- 7.
doi: 10.3969/j.issn.1672-8246.2013.02.001 |
|
汪金松, 赵秀海, 张春雨, 等. 改变C源输入对油松人工林土壤呼吸的影响. 生态学报, 2012, 32 (9): 2768- 2777. | |
Wang J S , Zhao X H , Zhang C Y , et al. Changes of carbon input influence soil respiration in a Pinus tabulaeformis plantation. Acta Ecological Sinica, 2012, 32 (9): 2768- 2777. | |
杨璐, 赵博, 陈平, 等. 长期施氮对太岳山油松林凋落物量的影响. 生态学杂志, 2018, 37 (12): 3516- 3524. | |
Yang L , Zhao B , Chen P , et al. Effects of long-term nitrogen addition on litter production of Pinus tabuliformis forests in the Taiyue Mountain. Chinese Journal of Ecology, 2018, 37 (12): 3516- 3524. | |
伊锋, 韩有志, 贺自书, 等. 山西太岳山森林生物量与碳密度研究. 山西农业科学, 2017, 45 (4): 599- 602.
doi: 10.3969/j.issn.1002-2481.2017.04.27 |
|
Yi F , Han Y Z , He Z S , et al. Study on the forest biomass and carbon density in Taiyue mountain of Shanxi Province, China. Journal of Shanxi Agricultural Sciences, 2017, 45 (4): 599- 602.
doi: 10.3969/j.issn.1002-2481.2017.04.27 |
|
张艺, 王春梅, 许可, 等. 模拟氮沉降对温带森林土壤酶活性的影响. 生态学报, 2017, 37 (6): 1956- 1965. | |
Zhang Y , Wang C M , Xu K , et al. Effect of simulated nitrogen deposition on soil enzyme activities in a temperate forest. Acta Ecological Sinica, 2017, 37 (6): 1956- 1965. | |
Allison S D , Czimczik C I , Treseder K K . Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest. Global Change Biology, 2008, 14 (5): 1156- 1168.
doi: 10.1111/j.1365-2486.2008.01549.x |
|
Bond-Lamberty B , Thomson A . A global database of soil respiration data. Biogeosciences, 2010, 7 (6): 1915- 1926.
doi: 10.5194/bg-7-1915-2010 |
|
Boone R D , Nadelhoffer K J , Canary J D , et al. Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 1998, 396 (6711): 570.
doi: 10.1038/25119 |
|
Bowden R D , Davidson E , Savage K , et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004, 196 (1): 43- 56.
doi: 10.1016/j.foreco.2004.03.011 |
|
Chen H , Tian H Q . Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale?. Journal of Integrative Plant Biology, 2005, 47 (11): 1288- 1302.
doi: 10.1111/j.1744-7909.2005.00211.x |
|
Chen J , Luo Y Q , Li J W , et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition. Global Change Biology, 2017, 23 (3): 1328- 1337.
doi: 10.1111/gcb.13402 |
|
Chen J , Luo Y Q , Van Groenigen K J , et al. A keystone microbial enzyme for nitrogen control of soil carbon storage. Science Advances, 2018, 4 (8): eaaq1689.
doi: 10.1126/sciadv.aaq1689 |
|
Chen S T , Zou J W , Hu Z H , et al. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology, 2014, 198, 335- 346. | |
Crowther T W , Riggs C , Lind E M , et al. Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecology letters, 2019, 22 (6): 936- 945.
doi: 10.1111/ele.13258 |
|
Curiel Yuste J , Janssens I A , Carrara A , et al. Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 2004, 10 (2): 161- 169.
doi: 10.1111/j.1529-8817.2003.00727.x |
|
Davidson E A , Belk E , Boone R D . Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global change biology, 1998, 4 (2): 217- 227.
doi: 10.1046/j.1365-2486.1998.00128.x |
|
Deng Q , Zhou G , Liu J , et al. Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences, 2010, 7 (1): 315- 328.
doi: 10.5194/bg-7-315-2010 |
|
Dixon R K , Solomon A M , Brown S , et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263 (5144): 185- 190.
doi: 10.1126/science.263.5144.185 |
|
Fang C M , Moncrieff J B . The dependence of soil CO2 efflux on temperature. Soil Biology and Biochemistry, 2001, 33 (2): 155- 165.
doi: 10.1016/S0038-0717(00)00125-5 |
|
Galloway J N , Townsend A R , Erisman J W , et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320 (5878): 889- 892.
doi: 10.1126/science.1136674 |
|
Janssens I A , Dieleman W , Luyssaert S , et al. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 2010, 3 (5): 315.
doi: 10.1038/ngeo844 |
|
Joffre R , Ourcival J M , Rambal S , et al. The key-role of topsoil moisture on CO2 efflux from a Mediterranean Qeurcus ilex forest. Annals of Forest Science, 2003, 60 (6): 519- 526.
doi: 10.1051/forest:2003045 |
|
Keeler B L , Hobbie S E , Kellogg L E . Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems, 2009, 12 (1): 1- 15.
doi: 10.1007/s10021-008-9199-z |
|
Laganière J , Paré D , Bergeron Y , et al. The effect of boreal forest composition on soil respiration is mediated through variations in soil temperature and C quality. Soil Biology and Biochemistry, 2012, 53, 18- 27.
doi: 10.1016/j.soilbio.2012.04.024 |
|
Li Q , Song X Z , Chang S X , et al. Nitrogen depositions increase soil respiration and decrease temperature sensitivity in a moso bamboo forest. Agricultural and Forest Meteorology, 2019, 268, 48- 54.
doi: 10.1016/j.agrformet.2019.01.012 |
|
Litton C M , Raich J W , Ryan M G . Carbon allocation in forest ecosystems. Global Change Biology, 2007, 13 (10): 2089- 2109.
doi: 10.1111/j.1365-2486.2007.01420.x |
|
Li Y , Sun J , Tian D S , et al. Soil acid cations induced reduction in soil respiration under nitrogen enrichment and soil acidification. Science of the Total Environment, 2018, 615, 1535- 1546.
doi: 10.1016/j.scitotenv.2017.09.131 |
|
Ma Y C , Zhu B , Sun Z Z , et al. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch. Journal of Plant Ecology, 2013, 7 (3): 240- 249. | |
Nadelhoffer K J . The potential effects of nitrogen deposition on fine-root production in forest ecosystems. The New Phytologist, 2000, 147 (1): 131- 139.
doi: 10.1046/j.1469-8137.2000.00677.x |
|
Pregitzer K S , Burton A J , Zak D R , et al. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology, 2008, 14 (1): 142- 153.
doi: 10.1111/j.1365-2486.2007.01465.x |
|
Ramirez K S , Craine J M , Fierer N . Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, 2012, 18 (6): 1918- 1927.
doi: 10.1111/j.1365-2486.2012.02639.x |
|
Samuelson L , Mathew R , Stokes T , et al. Soil and microbial respiration in a loblolly pine plantation in response to seven years of irrigation and fertilization. Forest Ecology and Management, 2009, 258 (11): 2431- 2438.
doi: 10.1016/j.foreco.2009.08.020 |
|
Savage K E , Parton W J , Davidson E A , et al. Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest. Global Change Biology, 2013, 19 (8): 2389- 2400.
doi: 10.1111/gcb.12224 |
|
Sinsabaugh R L , Gallo M E , Lauber C , et al. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry, 2005, 75 (2): 201- 215.
doi: 10.1007/s10533-004-7112-1 |
|
Sun Z Z , Liu L L , Ma Y C , et al. The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil. Agricultural and Forest Meteorology, 2014, 197, 103- 110.
doi: 10.1016/j.agrformet.2014.06.010 |
|
Tian D S , Niu S L . A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10 (2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
|
Tu L H , Hu T X , Zhang J , et al. Nitrogen addition stimulates different components of soil respiration in a subtropical bamboo ecosystem. Soil Biology and Biochemistry, 2013, 58, 255- 264.
doi: 10.1016/j.soilbio.2012.12.005 |
|
Wang C , Liu D W , Bai E . Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology and Biochemistry, 2018, 120, 126- 133.
doi: 10.1016/j.soilbio.2018.02.003 |
|
Wang J S , Bu W S , Zhao B , et al. Effects of nitrogen addition on leaf decomposition of single-species and litter mixture in Pinus tabulaeformis forests. Forests, 2015, 6 (12): 4462- 4476.
doi: 10.3390/f6124381 |
|
Xia M X , Talhelm A F , Pregitzer K S . Chronic nitrogen deposition influences the chemical dynamics of leaf litter and fine roots during decomposition. Soil Biology and Biochemistry, 2017, 112, 24- 34.
doi: 10.1016/j.soilbio.2017.04.011 |
|
Yan T , Qu T T , Sun Z Z , et al. Negative effect of nitrogen addition on soil respiration dependent on stand age: evidence from a 7-year field study of larch plantations in northern China. Agricultural and Forest Meteorology, 2018, 262, 24- 33.
doi: 10.1016/j.agrformet.2018.06.029 |
|
Yu S Q , Chen Y Q , Zhao J , et al. Temperature sensitivity of total soil respiration and its heterotrophic and autotrophic components in six vegetation types of subtropical China. Science of the Total Environment, 2017, 607, 160- 167. | |
Zhang T A , Chen H Y H , Ruan H H . Global negative effects of nitrogen deposition on soil microbes. The ISME Journal, 2018, 12 (7): 1817.
doi: 10.1038/s41396-018-0096-y |
|
Zhao B , Wang J S , Cao J , et al. Inconsistent autotrophic respiration but consistent heterotrophic respiration responses to 5-years nitrogen addition under natural and planted Pinus tabulaeformis forests in northern China. Plant and Soil, 2018, 429 (1/2): 375- 389. | |
Zheng S , Bian H F , Quan Q , et al. Effect of nitrogen and acid deposition on soil respiration in a temperate forest in China. Geoderma, 2018, 329, 82- 90.
doi: 10.1016/j.geoderma.2018.05.022 |
|
Zheng Z M , Yu G R , Fu Y L , et al. Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study. Soil Biology and Biochemistry, 2009, 41 (7): 1531- 1540.
doi: 10.1016/j.soilbio.2009.04.013 |
|
Zhou L Y , Zhou X H , Zhang B C , et al. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis. Global Change Biology, 2014, 20 (7): 2332- 2343.
doi: 10.1111/gcb.12490 |
[1] | Liu Bao, Wang Minhuang, Yu Zaipeng, Lin Sizu, Lin Kaimin. Characterization of Soil Respiration after Conversion from Natural Forest to Plantations in Central-Subtropical Area [J]. Scientia Silvae Sinicae, 2019, 55(4): 1-12. |
[2] | Liu Peng, Jia Xin, Yang Qiang, Zha Tianshan, Wang Ben, Ma Jingyong. Characterization of Soil Respiration in a Shrubland Ecosystem of Artemisia ordosica in Mu Us Desert [J]. Scientia Silvae Sinicae, 2018, 54(5): 10-17. |
[3] | Hu Zongda, Liu Shirong, Hu Jing, Liu Xingliang, Yu Hao, Li Dengfeng, He Fei. Soil Respiration Characteristics and Impacting Factors in Burned Area of Quercus aquifolioides in Western Sichuan, China [J]. Scientia Silvae Sinicae, 2018, 54(2): 18-29. |
[4] | Han Haiyan, Zhang Tao, Wang Pengcheng, Lei Jingpin, Zeng Lixiong, Huang Zhilin, Xiao Wenfa. Characteristics of Soil Respiration in Three Types of Stands in Lanlingxi Small Watershed in Three Gorges Reservoir Area [J]. Scientia Silvae Sinicae, 2014, 50(11): 182-187. |
[5] | Wang Jinsong;Fan Juan;Zhao Xiuhai;Xia Fucai;Ni Ruiqiang;Jin Guanyi;Guo Yiqiu;Li Huashan. Soil Respiration Components and Its Controlling Factors in a Pinus tabulaeformis Plantation in Taiyue Mountain, China [J]. , 2013, 49(2): 1-7. |
[6] | Zhang Yan;Jiang Peikun;Xu Kaiping;Li Yongfu;Wu Jiasen;Liu Juan. Annual Dynamic of Soil Respiration and Its Influential Factors in Intensively-Managed Forests of Phyllostachys praecox [J]. Scientia Silvae Sinicae, 2011, 47(6): 17-22. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||