Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (9): 173-183.doi: 10.11707/j.1001-7488.LYKX20250038
• Research papers • Previous Articles
Zhifeng Wang1,4,Shuchang Tang1,Xizhi Peng1,Da Wang1,4,Zhongfeng Zhang2,4,Xianjun Li3,4,*()
Received:
2025-01-20
Online:
2025-09-25
Published:
2025-10-10
Contact:
Xianjun Li
E-mail:lxjmu@163.com
CLC Number:
Zhifeng Wang,Shuchang Tang,Xizhi Peng,Da Wang,Zhongfeng Zhang,Xianjun Li. Axial Compression Performance of Laminated Bamboo Grid Sandwich Panels[J]. Scientia Silvae Sinicae, 2025, 61(9): 173-183.
Table 2
Geometric parameters of laminated bamboo grid sandwich panel specimens"
组号 Group | 试件编号 Specimen number | 试件尺寸 Specimen dimensions | 面板厚度 Panel thickness/mm | 芯体厚度 Core thickness/mm | 芯体单板厚度 Core veneer thickness/mm | 长宽比 Aspect ratio | 等效密度 Equivalent density/(g·cm?3) | 数量 Number | ||
长度 Length/mm | 宽度 Width/mm | 厚度 Thickness/mm | ||||||||
1 | BSP-L300 | 300 | 300 | 64 | 8 | 48 | 8 | 1 | 0.24 | 3 |
2 | BSP-L600 | 600 | 300 | 64 | 8 | 48 | 8 | 2 | 0.24 | 3 |
3 | BSP-L900 | 900 | 300 | 64 | 8 | 48 | 8 | 3 | 0.24 | 3 |
4 | BSP-L1200 | 300 | 64 | 8 | 48 | 8 | 4 | 0.24 | 3 |
Table 3
Test results of axial compression for laminated bamboo grid sandwich panel"
试件编号 Specimen number | 长度 Length/ mm | 长宽比 Aspect ratio | 承载力平均值 Average bearing capacity /kN | 破坏模式 Destructive mode |
BSP-L300 | 300 | 1 | 205.42 | 局部屈曲破坏 Local buckling failure |
BSP-L600 | 600 | 2 | 189.16 | 局部屈曲破坏 Local buckling failure |
BSP-L900 | 900 | 3 | 180.39 | 局部屈曲破坏 Local buckling failure |
BSP-L1200 | 4 | 167.89 | 整体屈曲破坏 Global buckling failure |
Table 4
Comparison of calculated and experimental axial compression bearing capacity for laminated bamboo grid sandwich panel"
试件编号 Specimen number | 试验值 Experimental value /kN | 理论值 Theoretical value /kN | 误差 Error(%) | 破坏模式 Failure mode |
BSP-L300 | 205.42 | 207.36 | 0.94 | 局部屈曲破坏 Local buckling failure |
BSP-L600 | 189.16 | 194.66 | 2.83 | 局部屈曲破坏 Local buckling failure |
BSP-L900 | 180.39 | 181.96 | 0.86 | 局部屈曲破坏 Local buckling failure |
BSP-L1200 | 167.89 | 182.45 | 7.98 | 整体屈曲破坏 Global buckling failure |
Table 5
Comparison table of experimental values, finite element simulation values, and formula calculation values for critical buckling capacity"
长宽比 Aspect ratio | 公式计算值 Formula calculation values /kN | 有限元 计算值 Finite element simulation values /kN | 误差 Error(%) | 试验值 Experimental values/kN | 误差 Error(%) |
1 | 207.36 | 212.47 | 2.46 | 205.42 | 0.94 |
2 | 194.66 | 198.03 | 1.73 | 189.16 | 2.83 |
3 | 181.96 | 187.02 | 2.78 | 180.39 | 0.86 |
4 | 182.45 | 176.37 | 3.33 | 167.89 | 7.98 |
5 | 125.1 | 119.7 | 4.32 | ||
6 | 90.46 | 84.85 | 6.20 | ||
7 | 64.31 | 58.19 | 9.52 | ||
8 | 52.9 | 45.31 | 14.34 |
李海涛, 宣一伟, 许 斌, 等. 竹材在土木工程领域的应用. 林业工程学报, 2020, 5 (6): 1- 10. | |
Li H T, Xuan Y W, Xu B, et al. Bamboo application in civil engineering field. Journal of Forestry Engineering, 2020, 5 (6): 1- 10. | |
李晓龙, 刘伟庆, 方 海, 等. 格构腹板增强复合材料泡沫夹芯板侧压性能试验与分析. 南京工业大学学报(自然科学版), 2017, 39 (2): 64- 69. | |
Li X L, Liu W Q, Fang H, et al. Edgewise compressive test and analysis for lattice web reinforced composite sandwich panels with foam core. Journal of Nanjing Tech University (Natural Science Edition), 2017, 39 (2): 64- 69. | |
刘 洋, 林心渝, 王骏达, 等. 模块建筑生态化木结构及轻量化铝结构研究进展. 绿色建筑, 2024, (6): 56- 62. | |
Liu Y, Lin X Y, WANG J D, et al. Research progress on ecological wooden structures and lightweight aluminum structures for modular buildings. green building, 2024, (6): 56- 62. | |
刘延鹤, 周建波, 傅万四, 等. 基于高频热压成型的竹集成材制备及力学性能评价. 林业科学, 2020, 56 (8): 131- 140. | |
Liu Y H, Zhou J B, Fu W S, et al. Preparation and mechanical property evaluation of glued laminated bamboo based on high frequency heating. Scientia Silvae Sinicae, 2020, 56 (8): 131- 140. | |
欧阳懿桢, 方 海, 刘伟庆, 等. 单向纤维腹板格构增强复合材料夹层板侧压试验研究. 水利与建筑工程学报, 2013, 11 (4): 24- 27. | |
Ouyang Y Z, Fang H, Liu W Q, et al. Research on lateral compression test for fiber-reinforced composite sandwich plates with one-way web. Journal of Water Resources and Architectural Engineering, 2013, 11 (4): 24- 27. | |
沈春燕, 方 海, 祝 露, 等. 波纹腹板增强泡沫夹芯复合材料结构准静态压缩吸能特性. 工程力学, 2023, 40 (1): 121- 131. | |
Shen C Y, Fang H, Zhu L, et al. Energy-absorption properties of corrugated web reinforced foam core sandwich composites under quasi-static compression. Engineering Mechanics, 2023, 40 (1): 121- 131. | |
盛 叶, 何钰雯, 郭任坤, 等. 重组竹抗弯试验及特征值确定. 林业科学, 2024, 60 (7): 149- 157. | |
Sheng Y, He Y W, Guo R K, et al. Bending test and determination of characteristic value of bamboo scrimber. Scientia Silvae Sinicae, 2024, 60 (7): 149- 157. | |
隋倩倩, 江 舒, 孙方方, 等. 多级三角形格栅夹芯板力学分析. 复合材料学报, 2016, 33 (3): 675- 680. | |
Sui Q Q, Jiang S, Sun F F, et al. Mechanical analysis of hierarchical isogrid sandwich plate. Acta Materiae Compositae Sinica, 2016, 33 (3): 675- 680. | |
唐智荣. 2016. 复合夹芯板在弯曲和轴压荷载作用下的力学性能研究. 哈尔滨: 哈尔滨工业大学. | |
Tang Z R. 2016. Study on mechanical performances of sandwich panels under bending and axial loads. Harbin: Harbin Institute of Technology. [in Chinese] | |
王智丰, 李贤军, 易 锦, 等. 大跨胶合木拱桥人致振动及其优化控制. 土木工程学报, 2021, 54 (4): 79- 94. | |
Wang Z F, Li X J, Yi J, et al. Human-induced vibration and optimal control of long-span glulam arch bridges. China Civil Engineering Journal, 2021, 54 (4): 79- 94. | |
王智丰, 周李承. 不同构型集成竹格栅夹芯板抗弯性能. 北京林业大学学报, 2025, 47 (1): 147- 155.
doi: 10.12171/j.1000-1522.20240088 |
|
Wang Z F, Zhou L C. Bending performance of laminated bamboo sandwich panels with different lattice configurations. Journal of Beijing Forestry University, 2025, 47 (1): 147- 155.
doi: 10.12171/j.1000-1522.20240088 |
|
吴林志, 熊 健, 马 力, 等. 新型复合材料点阵结构的研究进展. 力学进展, 2012, 42 (1): 41- 67.
doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095 |
|
Wu L Z, Xiong J, Ma L, et al. Processes in the study on novel composite sandwich panels with lattice truss cores. Advances in Mechanics, 2012, 42 (1): 41- 67.
doi: 10.6052/1000-0992-2012-1-lxjzJ2011-095 |
|
《木结构设计手册》编辑委员会. 2021. 木结构设计手册. 4版. 北京: 中国建筑工业出版社. | |
Editorial Committee of Design Manual of Wood Structures. 2021. Design manual of wood structures. 4th ed. Beijing: China Architecture &Building Press. [in Chinese] | |
徐佳佳, 方 海, 韩 娟, 等. 格构腹板增强泡沫夹芯复合材料准静态压缩吸能特性. 复合材料学报, 2022, 39 (8): 3965- 3981. | |
Xu J J, Fang H, Han J, et al. Energy absorption behavior of foam-filled sandwich composite materials reinforced by lattice webs under quasi-static compression. Acta Materiae Compositae Sinica, 2022, 39 (8): 3965- 3981. | |
杨 柳. 2022. 面内轴压荷载下BFRP泡沫夹芯墙板破坏机理及局部屈曲承载力分析. 成都: 西南交通大学. | |
Yang L. 2022. Analysis of failure mechanism and local buckling capacity analysis of BFRP foam sandwich wallboard under in-plane axial compression. Chengdu: Southwest Jiaotong University. [in Chinese] | |
赵仕兴, 周巧玲, 齐锦秋, 等. 重组竹结构的研究现状与工程应用. 建筑结构, 2023, 53 (7): 109- 117. | |
Zhao S X, Zhou Q L, Qi J Q, et al. Research status and engineering application of bamboo scrimber structure. Building Structure, 2023, 53 (7): 109- 117. | |
郑吉良, 孙 勇, 彭明军. 等腰梯形蜂窝芯玻璃钢夹芯板的热性能. 复合材料学报, 2016, 33 (7): 1361- 1370. | |
Zheng J L, Sun Y, Peng M J. Thermal performance for isosceles trapezoid honeycomb core of glass steel sandwich panel. Acta Materiae Compositae Sinica, 2016, 33 (7): 1361- 1370. | |
郑 青. 2017. 新型格栅结构设计及力学性能研究. 长沙: 国防科技大学. | |
Zheng Q. 2017. Design and mechanical properties of novel lattice structures. Changsha: National University of Defense Technology. [in Chinese] | |
Andrade P, Lagerqvist O, Simões R, et al. On global and local buckling response of structural angle sandwich panels. Thin-Walled Structures, 2022, 180, 109835.
doi: 10.1016/j.tws.2022.109835 |
|
Kumar D, Mandal A. Review on manufacturing and fundamental aspects of laminated bamboo products for structural applications. Construction and Building Materials, 2022, 348, 128691.
doi: 10.1016/j.conbuildmat.2022.128691 |
|
Liu J Y, Zhu X, Zhou Z G, et al. Effects of thermal exposure on mechanical behavior of carbon fiber composite pyramidal truss core sandwich panel. Composites Part B: Engineering, 2014, 60, 82- 90.
doi: 10.1016/j.compositesb.2013.12.059 |
|
Mousa M A, Uddin N. Structural behavior and modeling of full-scale composite structural insulated wall panels. Engineering Structures, 2012, 41, 320- 334.
doi: 10.1016/j.engstruct.2012.03.028 |
|
Sun Z, Shi S S, Guo X, et al. On compressive properties of composite sandwich structures with grid reinforced honeycomb core. Composites Part B: Engineering, 2016, 94, 245- 252.
doi: 10.1016/j.compositesb.2016.03.054 |
|
Tang Z, Shan B, Li W G, et al. Structural behavior of glubam I-joists. Construction and Building Materials, 2019, 224, 292- 305.
doi: 10.1016/j.conbuildmat.2019.07.082 |
|
Wang A J, McDowell D L. In-plane stiffness and yield strength of periodic metal honeycombs. Journal of Engineering Materials and Technology, 2004, 126 (2): 137- 156.
doi: 10.1115/1.1646165 |
|
Wang Z F, Zhou L C, Chen G W. Optimal design and application of a MTMD system for a glulam footbridge under human-induced excitation. European Journal of Wood and Wood Products, 2023, 81 (2): 529- 545.
doi: 10.1007/s00107-022-01885-5 |
|
Wang Z F, Zhou L C, Zhang Z F, et al. Study on bending performance of laminated bamboo sandwich panels with different lattice core layers: Cleaner production of green material. Case Studies in Construction Materials, 2024, 20, e03379.
doi: 10.1016/j.cscm.2024.e03379 |
|
Wu Z M, Liu W Q, Wang L, et al. Theoretical and experimental study of foam-filled lattice composite panels under quasi-static compression loading. Composites Part B: Engineering, 2014, 60, 329- 340.
doi: 10.1016/j.compositesb.2013.12.078 |
[1] | Yanhe Liu,Jianbo Zhou,Wansi Fu,Bin Zhang,Feihu Chang,Wen He. Preparation and Mechanical Property Evaluation of Glued Laminated Bamboo Based on High Frequency Heating [J]. Scientia Silvae Sinicae, 2020, 56(8): 131-140. |
[2] | Ren Hong, Shen Wenwen, Bai Jieyun, Guan Jun. Mathematical Models and Analysis of Particle Size of Coniferous Wood Flour Based on the Least Squares Method [J]. Scientia Silvae Sinicae, 2015, 51(4): 164-170. |
[3] | Gai Xiaogang, Chen Lihua, Jiang Kunyun, Ji Wenxian. Shear Characteristic Research on Root-Soil Composite in Four Kinds of Roots of Trees and Different Root Buried Ways [J]. Scientia Silvae Sinicae, 2014, 50(9): 105-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||