陈涤非, 王明玉, 司莉青, 等. 2023. 四川省雷击火时空分布特征及影响因素分析. 林业科学, 59(10): 32-40. Chen D F, Wang M Y, Si L Q, et al. 2023. Temporal and spatial distribution characteristics and the influencing factors of lightning-caused fires in Sichuan. Scientia Silvae Sinicae, 59(10): 32-40. [in Chinese] 杜春英, 李 帅, 刘 丹, 等. 2010. 大兴安岭地区森林雷击火发生的时空分布. 自然灾害学报, 19(3): 72-76. Du C Y, Li S, Liu D, et al. 2010. Spatiotemporal distribution of lightning caused forest fires in Daxing’anling area. Journal of Natural Disasters, 19(3): 72-76. [in Chinese] 焦强英, 韩宗甫, 王炜烨, 等. 2023. 基于多源数据和机器学习方法的大兴安岭地区雷击火驱动因子及火险预测模型. 林业科学, 59(6): 74-87. Jiao Q Y, Han Z F, Wang W Y, et al. 2023. Driving factors and forecasting model of lightning-caused forest fires in Daxing’anling Mountains based on multi-sources data and machine learning method. Scientia Silvae Sinicae, 59(6): 74-87. [in Chinese] 李 威, 舒立福, 王明玉, 等. 2023. 大兴安岭1980-2021年雷击火时空分布特征. 林业科学, 59(10): 22-31. Li W, Shu L F, Wang M Y, et al. 2023. Temporal and spatial distribution and dynamic characteristics of lightning-caused fires in the Daxing’anling Mountains from 1980 to 2021. Scientia Silvae Sinicae, 59(10): 22-31. [in Chinese] 李伟克, 舒立福, 苑尚博, 等. 2022. 基于VLF/LF三维闪电定位系统的大兴安岭闪电时空分布特征. 林业科学, 58(11): 21-30. Li W K, Shu L F, Yuan S B, et al. 2022. Temporal and spatial distribution characteristics of lightning in Daxing’anling Mountains based on vlf/lf 3d lightning location system. Scientia Silvae Sinicae, 58(11): 21-30. [in Chinese] 罗 磊, 王 蕾, 刘 平, 等. 2019. 阿尔泰山落叶松林碳储量与生产力时空特征及其气候成因分析. 生态学报, 39(22): 8575-8584. Luo L, Wang L, Liu P, et al. 2019. Spatio-temporal analysis of carbon sequestration and NPP in Larix forest in the Altay Mountains. Acta Ecologica Sinica, 39(22): 8575-8584. [in Chinese] 麻泽宇, 王 丹, 戴 伟, 等. 2016. 阿尔泰山不同海拔梯度天然冷杉林土壤特征及肥力综合评价. 水土保持研究, 23(5): 134-140. Ma Z Y, Wang D, Dai W, et al. 2016. Soil Characteristics and fertility evaluation of abies sibirica forest at different altitude gradients in Altai Mountain. Research of Soil and Water Conservation, 23(5): 134-140. [in Chinese] 舒 洋, 孙子瑜, 张 恒. 2022. 世界森林雷击火研究现状和展望. 世界林业研究, 35(2): 34-40. Shu Y, Sun Z Y, Zhang H. 2022. Research on lightning fire in forest: currentstatus and outlook. World forestry Research, 35(2): 34-40. [inChinese] 舒立福, 王明玉, 田晓瑞, 等. 2003. 我国大兴安岭呼中林区雷击火发生火环境研究. 林业科学, 39(6): 94-99. Shu L F, Wang M Y, Tian X R, et al. 2003. The fire environment mechanism of lightning fire formed for Daxing’an Mountains. Scientia Silvae Sinicae, 39(6): 94-99. [in Chinese] 舒立福, 田晓瑞, 李 骞, 等. 1999. 雷击火形成及预防扑救对策. 火灾科学, 8(3): 31-37. Shu L F, Tian X R, Li Q, et al. 1999. The mechanism and strategies of fighting fire happened, prevented and extinguished. Fire Safety Science, 8(3): 31-37. [in Chinese] 司莉青, 王明玉, 陈 锋, 等. 2023. 雷电分布特征与雷击森林火预警. 林业科学, 59(10): 1-8. Si L Q, Wang M Y, Chen F, et al. 2023. Distribution characteristics of lightning and the warning of lightning-caused forest fires. Scientia Silvae Sinicae, 59(10): 1-8. [in Chinese] 田晓瑞, 舒立福, 赵凤君, 等. 2012. 大兴安岭雷击火发生条件分析. 林业科学, 48(7): 98-103. Tian X R, Shu L F, Zhao F J, et al. 2012. Analysis of the conditions for lightning fire occurrence in Daxing’anling region. Scientia Silvae Sinicae, 48(7): 98-103. [in Chinese] 王明玉, 李伟克, 舒立福, 等. 2023. 雷击火高发的呼中地区瞭望塔配置的可视性评价. 林业科学, 59(10): 9-21. Wang M Y, Li W K, Shu L F, et al. 2023. Visibility evaluation of the lookout tower configuration in Huzhong area where lightning-caused fires frequently occur. Scientia Silvae Sinicae, 59(10): 9-21. [in Chinese] 王明玉, 苑尚博, 李 威, 等. 2022. 密集雷电引发大兴安岭群发雷击火过程及其影响因素. 林业科学, 58(11): 10-20. Wang M Y, Yuan S B, Li W, et al. 2022. Process and influencing factors of mass lightning-caused fires caused by dense lightning in Daxing’anling Mountains. Scientia Silvae Sinicae, 58(11): 10-20. [in Chinese] 王学良, 余田野, 汪姿荷, 等. 2016. 1961—2013 年中国雷暴气候特征及东亚夏季风影响研究. 暴雨灾害, 35(5): 471-481. Wang X L, Yu T Y, Wang Z H, et al. 2016. Analysis on climate characteristics of thunderstorm in China and effect of East Asian summer monsoon on it during 1961—2013. Torrential Rain and Disasters, 35(5): 471-481. [in Chinese] 臧桐汝, 舒立福, 王明玉, 等. 2022. 黑龙江大兴安岭林区雷击火时空分布及驱动因素分析. 西北农林科技大学学报(自然科学版), 50(12): 64-76. Zang T R, Shu L F, Wang M Y, et al. 2022. Analysis of spatial and temporal distribution and driving factors of lightning-caused fires in Daxing’anling forest region of Heilongjiang. Journal of Northwest A & F University (Natural Science Edition), 50(12): 64-76. [in Chinese] 周长明, 陈 亮, 陆明明, 等. 2022. 高纬度林区干雷暴与雷击火时空分布特征及其相关分析. 广西林业科学, 51(4): 520-526. Zhou C M, Chen L, Lu M M, et al. 2022. Temporal and spatial distribution characteristics of dry thunderstorm and lightning fire and their correlation in high latitude forest area. Guangxi forestry Science, 51(4): 520-526. [in Chinese] Abatzoglou J T, Kolden C A, Balch J K, et al. 2016. Controls on interannual variability in lightning caused fire activity in the western US. Environmental Research Letters, 11(4): 045005. Abdollahi M, Dewan A, Hassan Q K. 2019. Applicability of remote sensing based vegetation water content in modeling lightning caused forest fire occurrences. MDPI International Journal of Geo-Information, 8(3): 143. Balch J K, Bradley B A, Abatzoglou J T, et al. 2017. Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences, USA,114(11): 2946-2951. Duff T J, Keane R E, Penman T D, et al. 2017. Revisiting wildland fire fuel quantification methods: the challenge of understanding a dynamic, biotic entity. Forests, 8(9): 351. Feng J W, Shen H, Liang D. 2019. Investigation of lightning ignition characteristics based on an impulse current generator. Ecology and Evolution, 9(24): 245-258. Fernandes P, Guiomar N, Davim D A. 2022. Modelling the behavior and extent of mid-holocene lightning-caused fires in Portugal. Environmental Science-Processes & Impacts, 17: 89. Fisher J, Hoole P R P, Pirapaharan K, et al. 2014. Cloud to ground and ground to cloud flashes in lightning protection: and future severe lightning and climate change. Shanghai: International Conference on Lightning Protection(ICLP), 440–445. Krause A, Kloster S, Wilkenskjeld S, et al. 2014. The sensitivity of global wildfires to simulated past, present, and future lightning frequency. Journal of Geophysical Research, 119(3): 312-322. Lutz J A, van Wagtendonk J W, Thode A E, et al. 2009. Climate, lightning ignitions, and fire severity in Yosemite national park, California, USA. International Journal of Wildland Fire, 18(7): 765-774. Muller M M, Vacik H. 2017. Characteristics of lightnings igniting forest fires in Austria. Agricultural and forest Meteorology, 240-241: 26-34. Petrie M D, Savage N P, Stephen H. 2022. High and low air temperatures and natural wildfire ignitions in the Sierra Nevada Region. Environments, 9: 96. Price C, Rind D. 1994. Possible implications of global climate change on global lightning distributions and frequencies. Journal of Geophysical Research-Atmospheres, 99(D5): 10823-10831. Saha U, Siingh D, Midya S K, et al. 2017. Spatio-temporal variability of lightning and convective activity over South/ South-East Asia with an emphasis during El Niño and La Niña. Atmospheric Research, 197(nov.): 150-166. Stephenson C. 2010. The impacts, losses and benefits sustained from five severe bushfires in southeastern Australia. Melbourne: DSE Fire Research & Adaptive Management Publications Report . Taylor A R. 1969. Tree-bole ignition in superimposed lightning scars. New York: American Academic Press. Tippett M K, Allen J T, Gensini V A, et al. 2015. Climate and hazardous convective weather. Current Climate Change Reports, 1(2): 60-73. Veraverbeke S, Rogers B M, Goulden M L, et al. 2017. Lightning as a major driver of recent large fire years in north American boreal forests. Nature Climate Change, 7(7): 529-534.
|