Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 176-196.doi: 10.11707/j.1001-7488.LYKX20230476
• Reviews • Previous Articles Next Articles
Luxia Liu(),Bo Hu*(
),Guoqing Sang,Yuyu Liu
Received:
2023-10-08
Online:
2025-01-25
Published:
2025-02-09
Contact:
Bo Hu
E-mail:liuluxiaok@126.com;stu_hub@ujn.edu.cn
CLC Number:
Luxia Liu,Bo Hu,Guoqing Sang,Yuyu Liu. Assessing Forest Vegetation Diversity Using Forest Structure Indicators Based on LiDAR Remote Sensing: A Review[J]. Scientia Silvae Sinicae, 2025, 61(1): 176-196.
Table 1
Description of the LiDAR-derived metrics"
类别 Category | 分组 Subcategory | 变量常用名称 Name | 描述 Description |
高度变量 Height related metrics | 点云高度分位数 Percentile of point cloud height | HP5,HP10…, HP75,HP95 | 冠层点云高度分布的百分位数(5%、10%、... 、75%、95%) Percentile of canopy point cloud height distribution (5%,10%,... ,75%,95%) |
点云高度分布范围 Range of point cloud height | Hmin,Hmax,Hrange | 冠层点云高度分布的最小、最大高度以及高度差 The minimal,maximum and range of canopy point cloud height distribution | |
集中趋势 Concentration trend of point cloud height | Hmean,Hmedian,Hmode | 冠层点云高度分布的平均、中位数、众数值 The mean,median and mode of canopy point cloud height distribution | |
MADmedian | 中值以上所有点云高度绝对偏差的中值 Median of the absolute deviations in height above the median point cloud | ||
MADmode | 中值以上所有点云高度绝对偏差的众数 Mode of the absolute deviations in height of point cloud above the median | ||
离散趋势 Dispersion trend of point cloud height | Hvar,Hstdev,Hcv | 冠层点云高度分布的方差、标准差、变异系数 The variance,standard deviation and coefficient of variation of canopy point cloud height | |
AAD | 冠层点云高度分布的平均绝对偏差 The average absolute deviation of canopy point cloud height | ||
其他统计参数 Other statistical parameters | Hskewness,Hkurtosis | 冠层点云高度分布的偏度和峰度 The skewness and kurtosis of canopy point cloud height | |
L-moments | 冠层点云高度分布的线性矩,包括 L1、L2、L3、L4 The L-moments of canopy point cloud height(L1,L2,L3,L4) | ||
L-moment skewness | 冠层点云高度分布的线性矩偏度值 The L-moment skewness of canopy point cloud height | ||
L-moment kurtosis | 冠层点云高度分布的线性矩峰度值 The L-moment kurtosis of canopy point cloud height | ||
冠层高度模型统计参数 Indices derived from canopy height models | CHMmean,CHMstdev | CHM的平均值与方差 The mean and standard deviation of canopy height models | |
冠层覆盖变量 Canopy cover related metrics | 按回波区分 Return-related | rCCH | 指定高度(如均值、众数、地面)以上第一、二、三次回波百分比 Percentage of first,second,and third returns above a given height (such as mean,mode,ground level height) |
按密度区分 Density-related | DP5,DP 10…,DP 75,DP 95 | 大于5%、10%、... 、75%、95%分位数高度的所有植被点 占全部点的比例 Percentage of vegetation point cloud returns above the percentile heights (5%,10%,...,75%,95%) | |
冠层覆盖度 Canopy cover | CC | 根据冠层点云比例或者形态学滤波方法获取 Derived from canopy point cloud percentage or morphological filtering | |
冠层垂直分布变量 Canopy vertical related metrics | 冠层高度分布剖面 Canopy height distribution | CHD | 一般由冠层点云垂直分布频率获取或者进行Weibull分布拟合 Derived from canopy point cloud vertical frequency distribution or fitted with Weibull distribution |
叶面积密度剖面 Leaf area density profile | LAD | 通过地面以上的某冠层高度的间隙率与消光系数之间的 关系进行计算 Calculated from the relationship between gap and extinction coefficient for a given canopy height | |
LADcv,LADmean,LADstdev | 叶面积密度剖面的变异系数、平均值、标准差 The coefficient of variation,mean and standard deviation of Leaf area density profile | ||
叶高多样性 Foliage height diversity | FHD | 通过点云高度分布异质性计算 Calculated by point cloud height distribution heterogeneity | |
地形参数 Topography | 海拔、坡度、坡向 Elevation,slope,aspect | 通过LiDAR数据生成的数字高程模型计算 Calculated from LiDAR digital elevation model (DEM) | |
地形粗糙度 Terrain roughness | |||
地形湿润指数 Topographic wetness index | TWI |
Table 2
Description of the LiDAR estimated forest structural attributes"
尺度 Scale | 森林结构属性 Forest structural attributes | 主要数据来源 LiDAR data | 方法与LiDAR特征变量 Methods and LiDAR-derived metrics | 参考文献 Reference |
林分尺度Stand scale | 覆盖度、树冠开阔度 Coverage&Canopy openness | 星载和机载激光雷达 Satellite and airborne LiDAR | 使用点云、波形特征建立统计模型 Building statistical models with point cloud and waveform features | |
冠层高度 Canopy height | ||||
生物量、蓄积量 Biomass&Volume | ||||
林冠分层 Canopy stratification | 使用波形特征或点云拟合的波形特征 Derived from waveform features or fitted waveforms features from point cloud | |||
林冠垂直分布及其复杂性 Canopy vertical distribution and its complexity | 使用点云、波形特征进行描述 Derived from waveform and point cloud features | |||
林下植被分布及生物量 Plant distribution and biomass under canopy | 星载、机载和地基 激光雷达 Satellite,airborne and terrestrial LiDAR | 使用点云、波形特征建立统计模型 Building statistical models with point cloud and waveform features | 2018; | |
单木分割 Tree segmentation | 机载和地基激光雷达 Airborne and terrestrial LiDAR | 使用CHM的图像特征、点云几何和辐射特征进行分割 Segmentation based on CHM or geometry and radiometric features of point cloud | ||
树种分类 Tree species classification | 使用树冠几何、辐射特征进行树种分类 Tree species classification based on geometry and radiometric features from tree canopy | |||
单木尺度 Tree scale | 树干结构参数 Stem structure parameters | 地基激光雷达 Terrestrial LiDAR | 使用点云几何特征构建 Derived from geometry features of point cloud | |
树冠结构参数 Crown structure parameters | 机载和地基激光雷达 Airborne and terrestrial LiDAR | 使用点云统计、几何特征构建 Derived from statistical and geometry features of point cloud | ||
叶分布 Foliage distribution | 地基激光雷达 Terrestrial LiDAR | 基于孔隙、接触频率、生物物理回归等方法统计点云分布 Statistics of point cloud distribution based on gap,contact frequency or biophysical regression method | ||
枝叶分离 Branch and leaf separation | 地基激光雷达 Terrestrial LiDAR | 使用点云辐射和几何特征进行区分 Distinguishing branches and leaves using point cloud radiation and geometric features | ||
单木骨架提取 Tree skeleton extraction |
Table 3
Studies of LiDAR for forest species diversity modeling"
研究区 Location | 森林类型 Forest type | 物种调查目标 Survey trees | 物种多样性指标 Species diversity indices | 取样面积Sample area/m2 | 遥感数据源 Remote sensing data | 模型 Modeling | 模型结果 Model performance (R2) | 参考文献 References |
尤卡坦半岛 Yucatan Peninsula | 热带干旱森林 Tropical dry forests | DBH≥7.5 cm | SR | 400~ | ALS | MLR | 0.32~0.67 | |
智利 Chile | 混交次生林 Mixed secondary forests | ALL | SR | 225 | ALS&EO1-Hyperion | MLR | 0.57 | |
加纳 Ghana | 热带森林 Tropical forests | DBH≥20 cm | SR | ALS | MARS | 0.64 | ||
智利 Chile | 混交次生林 Mixed secondary forests | ALL | SR | 225 | ALS | GLM | 0.66 | |
美国北卡罗来纳州 NC,USA | 次生松林&硬木林 Successional pine & Mature hardwood forests | ALL | SR | 0.01~900 | ALS& Hyperspectral | RF | 0.19~0.70 | |
尤卡坦半岛 Yucatan Peninsula | 热带干旱森林 Tropical dry forests | DBH≥2.5 cm | SR,H | ALS&RapidEye | MLR | 0.89,0.81 | ||
加蓬 Gabon | 热带森林 Tropical forests | DBH≥10 cm | SR,H | 400~10 000 | ALS | LR | 0.71 | |
泛热带地区 Pan-tropical region | 热带森林 Tropical forests | DBH≥10 cm | SR | 625~10 000 | ALS | PR | 0.39 | |
意大利&德国 Italy&Germany | 温带森林 Temperate forests | DBH≥5 cm | SR,H,D | ALS | LR | 意大利Italy:0.18,0.63,0.57 德国Germany:0.48,0.56、0.56 | ||
美国全国 USA | NA | DBH≥10 cm | SR,H | 400 | ALS | SGLMM | 0.53,0.5 | |
坦桑尼亚 Tanzania | 热带森林 Tropical forests | DBH≥1 cm | SR,H | 700 | ALS | LMM | 0.45,0.38 | |
中国普洱 Puer,China | 亚热带森林 Subtropical forests | DBH≥5 cm | H | 700 | ALS& Hyperspectral | RF | LiDAR:0.5 Hyperspectral:0.48 LiDAR+ Hyperspectral:0.69 | |
中国 China | 亚热带森林 Subtropical forests | DBH≥1 cm | SR,H,J | 400 | UAV LiDAR | SSAEM | SR:0.27~0.62 H:0.37~0.67 J:0.32~0.61 | |
中国昆明 Kunming,China | 亚热带森林 Subtropical forests | TH≥2 m | SR,H,D | 400 | ICESat-2&GF-1 | GBRT | ICESat-2:0.62 GF-1:0.58 ICESat-2+GF-1:0.64 | |
意大利&德国 Italy&Germany | 温带森林 Temperate forests | DBH≥5 cm | SR,H | 10 000 | GEDI&Sentinel-2&Landsat8 | MLR | 意大利Italy:0.58,0.39 德国Germany:0.31,0.41 | |
中国东北 Northeast China | 温带混交林 Temperate mixed forests | DBH≥10 cm | H,D,J | GEDI&Sentinel-2 | RF | 0.72,0.78,0.86 |
郭庆华, 刘 瑾, 李玉美, 等. 生物多样性近地面遥感监测: 应用现状与前景展望. 生物多样性, 2016, 24 (11): 1249- 1266.
doi: 10.17520/biods.2016059 |
|
Guo Q H, Liu J, Li Y M, et al. A near-surface remote sensing platform for biodiversity monitoring: perspectives and prospects. Biodiversity Science, 2016, 24 (11): 1249- 1266.
doi: 10.17520/biods.2016059 |
|
郭庆华, 苏艳军, 胡天宇, 等. 2018. 激光雷达森林生态应用——理论、方法及实例. 北京: 高等教育出版社. | |
Guo Q H, Su Y J, Hu T Y, et al. 2018. LiDAR principles, processing and applications in forest ecology. Beijing: Higher Education Press. [in Chinese] | |
黄佳鹏. 2021. 基于ICESat-2/ATLAS光子计数LiDAR数据反演森林冠层高度研究. 哈尔滨: 东北林业大学. | |
Huang J P. 2021. Study on canopy height estimation based on ICESat-2/ATLAS photon counting LiDAR data. Harbin: Northeast Forestry University. [in Chinese] | |
李 顺, 邹 亮, 宫一男, 等. 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 2019, 27 (9): 1021- 1031.
doi: 10.17520/biods.2019166 |
|
Li S, Zou L, Gong Y N, et al. Advances in LiDAR technology in the field of animal ecology. Biodiversity Science, 2019, 27 (9): 1021- 1031.
doi: 10.17520/biods.2019166 |
|
刘鲁霞, 庞 勇, 任海保, 等. 基于高分2号遥感数据估测中亚热带天然林木本植物物种多样性. 林业科学, 2019, 55 (2): 61- 74.
doi: 10.11707/j.1001-7488.20190207 |
|
Liu L X, Pang Y, Ren H B, et al. Predict tree species diversity from GF-2 satellite data in a subtropical forest of China. Scientia Silvae Sinicae, 2019, 55 (2): 61- 74.
doi: 10.11707/j.1001-7488.20190207 |
|
刘鲁霞, 庞 勇, 桑国庆, 等. 普洱季风常绿阔叶林乔木物种多样性高分辨率遥感估测. 生态学报, 2022, 42 (20): 8398- 8413. | |
Liu L X, Pang Y, Sang G Q, et al. Applying high resolution remote sensing to assess tree species diversity of monsoonal broad-leaved evergreen forest in Pu’er City. Acta Ecologica Sinica, 2022, 42 (20): 8398- 8413. | |
任 淯, 陶胜利, 胡天宇, 等. 中国生物多样性核心监测指标遥感产品体系构建与思考. 生物多样性, 2022, 30 (10): 260- 275. | |
Ren Y, Tao S L, Hu T Y, et al. The outlook and system construction for monitoring essential biodiversity variables based on remote sensing: the case of China. Biodiversity Science, 2022, 30 (10): 260- 275. | |
田佳玉, 王 彬, 张志明, 等. 光谱多样性在植物多样性监测与评估中的应用. 植物生态学报, 2022, 46 (10): 1129- 1150.
doi: 10.17521/cjpe.2022.0077 |
|
Tian J Y, Wang B, Zhang Z M, et al. Application of spectral diversity in plant diversity monitoring and assessment. Chinese Journal of Plant Ecology, 2022, 46 (10): 1129- 1150.
doi: 10.17521/cjpe.2022.0077 |
|
张心竹, 王鹤松, 延 昊, 等. 2001—2018年中国总初级生产力时空变化的遥感研究. 生态学报, 2021, 41 (16): 6351- 6362. | |
Zhang X Z, Wang H S, Yan H, et al. Analysis of spatio-temporal changes of gross primary productivity in China from 2001 to 2018 based on romote sensing. Acta Ecologica Sinica, 2021, 41 (16): 6351- 6362. | |
赵 静, 李 静, 柳钦火. 森林垂直结构参数遥感反演综述. 遥感学报, 2013, 17 (4): 697- 716. | |
Zhao J, Li J, Liu Q H. Review of forest vertical structure parameter inversion based on remote sensing technology. Journal of Remote Sensing, 2013, 17 (4): 697- 716. | |
赵中华, 惠刚盈. 林分结构多样性研究进展. 林业科学, 2020, 56 (9): 143- 152. | |
Zhao Z H, Hui G Y. Advances in structural diversity of stand structure. Scientia Silvae Sinicae, 2020, 56 (9): 143- 152. | |
周中一, 刘 冉, 时书纳, 等. 基于激光雷达数据的物种分布模拟: 以美国加州内华达山脉南部区域食鱼貂分布模拟为例. 生物多样性, 2018, 26 (8): 878- 891.
doi: 10.17520/biods.2018051 |
|
Zhou Z Y, Liu R, Shi S N, et al. Ecological niche modeling with LiDAR data: a case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California. Biodiversity Science, 2018, 26 (8): 878- 891.
doi: 10.17520/biods.2018051 |
|
王藏姣. 2023. GEDI森林结构与功能参数产品精度分析与提升方法研究. 徐州: 中国矿业大学. | |
Wang C J. 2023. Accuracy analysis and improvement methods for forest structure and functioning parameters of GEDI products. Xuzhou: China University of Mining and Technology. [in Chinese] | |
Adhikari H, Valbuena R, Pellikka P K E, et al. Mapping forest structural heterogeneity of tropical montane forest remnants from airborne laser scanning and Landsat time series. Ecological Indicators, 2020, 108, 105739.
doi: 10.1016/j.ecolind.2019.105739 |
|
Almeida D R A, Stark S C, Schietti J, et al. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation. Ecological Applications, 2019a, 29 (6): e01952.
doi: 10.1002/eap.1952 |
|
Almeida D R, Stark S C, Shao G, et al. Optimizing the remote detection of tropical rainforest structure with airborne LiDAR: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sensing, 2019b, 11 (1): 92.
doi: 10.3390/rs11010092 |
|
Anderson C T, Dietz S L, Pokswinski S M, et al. Traditional field metrics and terrestrial LiDAR predict plant richness in southern pine forests. Forest Ecology and Management, 2021, 491 (1): 119118. | |
Aponte C, Kasel S, Nitschke C R, et al. Structural diversity underpins carbon storage in Australian temperate forests. Global Ecology and Biogeography, 2020, 29 (5): 789- 802.
doi: 10.1111/geb.13038 |
|
Asner G P, Martin R E, Knapp D E, et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 2017, 355 (6323): 385- 389.
doi: 10.1126/science.aaj1987 |
|
Atkins J W, Bohrer G, Fahey R T, et al. Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the FORESTR R package. Methods in Ecology and Evolution, 2018, 9 (10): 2057- 2066.
doi: 10.1111/2041-210X.13061 |
|
Atkins J W, Costanza J, Dahlin K M, et al. Scale dependency of LiDAR-derived forest structural diversity. Methods in Ecology and Evolution, 2023, 14 (2): 708- 723.
doi: 10.1111/2041-210X.14040 |
|
Bergen K M, Goetz S J, Dubayah R O, et al. Remote sensing of vegetation 3-D structure for biodiversity and habitat: review and implications for LiDAR and radar spaceborne missions. Journal of Geophysical Research: Biogeosciences, 2009, 114 (G2): 237. | |
Blanchard G, Barbier N, Vieilledent G, et al. UAV-LiDAR reveals that canopy structure mediates the influence of edge effects on forest diversity, function and microclimate. Journal of Ecology, 2023, 111 (7): 1411- 1427.
doi: 10.1111/1365-2745.14105 |
|
Bohlin I, Maltamo M, Hedenås H, et al. Predicting bilberry and cowberry yields using airborne laser scanning and other auxiliary data combined with National Forest Inventory field plot data. Forest Ecology and Management, 2021, 502, 119737.
doi: 10.1016/j.foreco.2021.119737 |
|
Bottalico F, Travaglini D, Chirici G, et al. Classifying silvicultural systems (coppices vs. high forests) in Mediterranean oak forests by Airborne Laser Scanning data. European Journal of Remote Sensing, 2014, 47 (1): 437- 460.
doi: 10.5721/EuJRS20144725 |
|
Bourdier T, Cordonnier T, Kunstler G, et al. Tree size inequality reduces forest productivity: an analysis combining inventory data for ten European species and a light competition model. PLoS One, 2016, 11 (3): e0151852.
doi: 10.1371/journal.pone.0151852 |
|
Bright B C, Hudak A T, McGaughey R, et al. Predicting live and dead tree basal area of bark beetle affected forests from discrete-return LiDAR. Canadian Journal of Remote Sensing, 2013, 39 (sup1): S99- S111.
doi: 10.5589/m13-027 |
|
Campbell M J, Dennison P E, Hudak A T, et al. Quantifying understory vegetation density using small-footprint airborne LiDAR. Remote Sensing of Environment, 2018, 215, 330- 342.
doi: 10.1016/j.rse.2018.06.023 |
|
Ceballos A, Hernández J, Corvalán P, et al. Comparison of airborne LiDAR and satellite hyperspectral remote sensing to estimate vascular plant richness in deciduous Mediterranean forests of central Chile. Remote Sensing, 2015, 7 (3): 2692- 2714.
doi: 10.3390/rs70302692 |
|
Chen Q D, Gao T, Zhu J J, et al. Individual tree segmentation and tree height estimation using leaf-off and leaf-on UAV-LiDAR data in dense deciduous forests. Remote Sensing, 2022, 14 (12): 2787.
doi: 10.3390/rs14122787 |
|
Coops N C, Hilker T, Wulder M A, et al. Estimating canopy structure of Douglas-fir forest stands from discrete-return LiDAR. Trees, 2007, 21 (3): 295- 310.
doi: 10.1007/s00468-006-0119-6 |
|
Ćosović M, Bugalho M, Thom D, et al. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests, 2020, 11 (3): 343.
doi: 10.3390/f11030343 |
|
Crespo-Peremarch P, Fournier R A, Nguyen V T, et al. A comparative assessment of the vertical distribution of forest components using full-waveform airborne, discrete airborne and discrete terrestrial laser scanning data. Forest Ecology and Management, 2020, 473, 118268.
doi: 10.1016/j.foreco.2020.118268 |
|
Crespo-Peremarch P, Tompalski P, Coops N C, et al. Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data. Remote Sensing of Environment, 2018, 217, 400- 413.
doi: 10.1016/j.rse.2018.08.033 |
|
Crockett E T H, Atkins J W, Guo Q F, et al. Structural and species diversity explain aboveground carbon storage in forests across the United States: Evidence from GEDI and forest inventory data. Remote Sensing of Environment, 2023, 295, 113703.
doi: 10.1016/j.rse.2023.113703 |
|
Dalponte M, Ene L, Gobakken T, et al. Predicting selected forest stand characteristics with multispectral ALS data. Remote Sensing, 2018, 10 (4): 586.
doi: 10.3390/rs10040586 |
|
Davies A B, Oram F, Ancrenaz M, et al. Combining behavioural and LiDAR data to reveal relationships between canopy structure and orangutan nest site selection in disturbed forests. Biological Conservation, 2019, 232, 97- 107.
doi: 10.1016/j.biocon.2019.01.032 |
|
Davison S, Donoghue D N M, Galiatsatos N. The effect of leaf-on and leaf-off forest canopy conditions on LiDAR derived estimations of forest structural diversity. International Journal of Applied Earth Observation and Geoinformation, 2020, 92, 102160.
doi: 10.1016/j.jag.2020.102160 |
|
Dorado-Roda I, Pascual A, Godinho S, et al. Assessing the accuracy of GEDI data for canopy height and aboveground biomass estimates in Mediterranean forests. Remote Sensing, 2021, 13 (12): 2279.
doi: 10.3390/rs13122279 |
|
Ehbrecht M, Schall P, Ammer C, et al. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agricultural and Forest Meteorology, 2017, 242, 1- 9.
doi: 10.1016/j.agrformet.2017.04.012 |
|
Ehbrecht M, Seidel D, Annighöfer P, et al. Global patterns and climatic controls of forest structural complexity. Nature Communications, 2021, 12 (1): 519.
doi: 10.1038/s41467-020-20767-z |
|
Erinjery J J, Singh M, Kent R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sensing of Environment, 2018, 216, 345- 354.
doi: 10.1016/j.rse.2018.07.006 |
|
Fahey R T, Atkins J W, Gough C M, et al. Defining a spectrum of integrative trait-based vegetation canopy structural types. Ecology Letters, 2019, 22 (12): 2049- 2059.
doi: 10.1111/ele.13388 |
|
Fang Z, Cao C X. Estimation of forest canopy height over mountainous areas using satellite LiDAR. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7 (7): 3157- 3166.
doi: 10.1109/JSTARS.2014.2300145 |
|
Fei S L, LaRue E A, Hardiman B S, et al. Structural diversity: a digital revolution. Frontiers in Ecology and the Environment, 2023, 21 (1): 3.
doi: 10.1002/fee.2600 |
|
Feng G, Zhang J, Girardello M, et al. Forest canopy height co-determines taxonomic and functional richness, but not functional dispersion of mammals and birds globally. Global Ecology and Biogeography, 2020, 29 (8): 1350- 1359.
doi: 10.1111/geb.13110 |
|
Ferrara R, Virdis S G P, Ventura A, et al. An automated approach for wood-leaf separation from terrestrial LIDAR point clouds using the density based clustering algorithm DBSCAN. Agricultural and Forest Meteorology, 2018, 262, 434- 444.
doi: 10.1016/j.agrformet.2018.04.008 |
|
Fuhr M, Lalechère E, Monnet J M, et al. Detecting overmature forests with airborne laser scanning (ALS). Remote Sensing in Ecology and Conservation, 2022, 8 (5): 731- 743.
doi: 10.1002/rse2.274 |
|
George-Chacon S P, Dupuy J M, Peduzzi A, et al. Combining high resolution satellite imagery and LiDAR data to model woody species diversity of tropical dry forests. Ecological Indicators, 2019, 101, 975- 984.
doi: 10.1016/j.ecolind.2019.02.015 |
|
Geremew T, Gonsamo A, Zewdie W, et al. Extrapolation of canopy height and cover metrics of GEDI LiDAR in tropical montane forest ecosystem. African Geographical Review, 2024, 43 (3): 467- 483.
doi: 10.1080/19376812.2023.2164865 |
|
Grotti M, Calders K, Origo N, et al. An intensity, image-based method to estimate gap fraction, canopy openness and effective leaf area index from phase-shift terrestrial laser scanning. Agricultural and Forest Meteorology, 2020, 280, 107766.
doi: 10.1016/j.agrformet.2019.107766 |
|
Guo Q H, Su Y J, Hu T Y, et al. LiDAR boosts 3D ecological observations and modelings: a review and perspective. IEEE Geoscience and Remote Sensing Magazine, 2021, 9 (1): 232- 257.
doi: 10.1109/MGRS.2020.3032713 |
|
Guo X, Coops N C, Tompalski P, et al. Regional mapping of vegetation structure for biodiversity monitoring using airborne LiDAR data. Ecological Informatics, 2017, 38, 50- 61.
doi: 10.1016/j.ecoinf.2017.01.005 |
|
Gwenzi D, Lefsky M A, Suchdeo V P, et al. Prospects of the ICESat-2 laser altimetry mission for savanna ecosystem structural studies based on airborne simulation data. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 118, 68- 82.
doi: 10.1016/j.isprsjprs.2016.04.009 |
|
Hakkenberg C R, Goetz S J. Climate mediates the relationship between plant biodiversity and forest structure across the United States. Global Ecology and Biogeography, 2021, 30 (11): 2245- 2258.
doi: 10.1111/geb.13380 |
|
Hakkenberg C R, Jantz P, Kaszta Z, et al. Inferring alpha, beta, and gamma plant diversity across biomes with GEDI spaceborne LiDAR. Environmental Research: Ecology, 2023, 2 (3): 035005.
doi: 10.1088/2752-664X/acffcd |
|
Hakkenberg C R, Peet R K, Wentworth T R, et al. Tree canopy cover constrains the fertility-diversity relationship in plant communities of the southeastern United States. Ecology, 2020, 101 (10): e03119.
doi: 10.1002/ecy.3119 |
|
Hakkenberg C R, Zhu K, Peet R K, et al. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing. Ecology, 2018, 99 (2): 474- 487.
doi: 10.1002/ecy.2109 |
|
Hambrecht L, Lucieer A, Malenovský Z, et al. Considerations for assessing functional forest diversity in high-dimensional trait space derived from drone-based LiDAR. Remote Sensing, 2022, 14 (17): 4287.
doi: 10.3390/rs14174287 |
|
Hamraz H, Contreras M A, Zhang J. Vertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 2017a, 130, 385- 392.
doi: 10.1016/j.isprsjprs.2017.07.001 |
|
Hamraz H, Contreras M A, Zhang J. Forest understory trees can be segmented accurately within sufficiently dense airborne laser scanning point clouds. Scientific Reports, 2017b, 7 (1): 6770.
doi: 10.1038/s41598-017-07200-0 |
|
Heinaro E, Tanhuanpää T, Vastaranta M, et al. Evaluating factors impacting fallen tree detection from airborne laser scanning point clouds. Remote Sensing, 2023, 15 (2): 382.
doi: 10.3390/rs15020382 |
|
Heinaro E, Tanhuanpää T, Yrttimaa T, et al. Airborne laser scanning reveals large tree trunks on forest floor. Forest Ecology and Management, 2021, 491, 119225.
doi: 10.1016/j.foreco.2021.119225 |
|
Hernández-Stefanoni J, Dupuy J, Johnson K, et al. Improving species diversity and biomass estimates of tropical dry forests using airborne LiDAR. Remote Sensing, 2014, 6 (6): 4741- 4763.
doi: 10.3390/rs6064741 |
|
Hevia A, Calzado A, Alejano R, et al. Identification of old-growth Mediterranean forests using airborne laser scanning and geostatistical analysis. Remote Sensing, 2022, 14 (16): 4040.
doi: 10.3390/rs14164040 |
|
Hubbell S P, He F L, Condit R, et al. 2008. Colloquium paper: how many tree species are there in the Amazon and how many of them will go extinct? Proceedings of the National Academy of Sciences of the United States of America, 105(Suppl 1): 11498-11504. | |
Hyde P, Dubayah R, Walker W, et al. Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy. Remote Sensing of Environment, 2006, 102 (1/2): 63- 73. | |
Hyyppä E, Kukko A, Kaijaluoto R, et al. Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 246- 262.
doi: 10.1016/j.isprsjprs.2020.01.018 |
|
Ilangakoon N, Glenn N F, Schneider F D, et al. Airborne and spaceborne LiDAR reveal trends and patterns of functional diversity in a semi-arid ecosystem. Frontiers in Remote Sensing, 2021, 2, 743320.
doi: 10.3389/frsen.2021.743320 |
|
Ishii H T, Tanabe S I, Hiura T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. Forest Science, 2004, 50 (3): 342- 355.
doi: 10.1093/forestscience/50.3.342 |
|
Itakura K, Miyatani S, Hosoi F. Estimating tree structural parameters via automatic tree segmentation from LiDAR point cloud data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 555- 564.
doi: 10.1109/JSTARS.2021.3135491 |
|
Jarron L R, Coops N C, MacKenzie W H, et al. Detection of sub-canopy forest structure using airborne LiDAR. Remote Sensing of Environment, 2020, 244, 111770.
doi: 10.1016/j.rse.2020.111770 |
|
Jönsson M T, Jonsson B G. Assessing coarse woody debris in Swedish woodland key habitats: Implications for conservation and management. Forest Ecology and Management, 2007, 242 (2/3): 363- 373. | |
Kacic P, Hirner A, Da Ponte E. Fusing Sentinel-1 and-2 to model GEDI-derived vegetation structure characteristics in GEE for the Paraguayan Chaco. Remote Sensing, 2021, 13 (24): 5105.
doi: 10.3390/rs13245105 |
|
Korpela I S. Mapping of understory lichens with airborne discrete-return LiDAR data. Remote Sensing of Environment, 2008, 112 (10): 3891- 3897.
doi: 10.1016/j.rse.2008.06.007 |
|
Krzystek P, Serebryanyk A, Schnörr C, et al. Large-scale mapping of tree species and dead trees in šumava National Park and Bavarian forest National Park using LiDAR and multispectral imagery. Remote Sensing, 2020, 12 (4): 661.
doi: 10.3390/rs12040661 |
|
Kunz M, Fichtner A, Härdtle W, et al. Neighbour species richness and local structural variability modulate aboveground allocation patterns and crown morphology of individual trees. Ecology Letters, 2019, 22 (12): 2130- 2140.
doi: 10.1111/ele.13400 |
|
Kuronen M, Henttonen H M, Myllymäki M. Correcting for nondetection in estimating forest characteristics from single-scan terrestrial laser measurements. Canadian Journal of Forest Research, 2019, 49 (1): 96- 103.
doi: 10.1139/cjfr-2018-0072 |
|
LaRue E A, Atkins J W, Dahlin K, et al. Linking Landsat to terrestrial LiDAR: Vegetation metrics of forest greenness are correlated with canopy structural complexity. International Journal of Applied Earth Observation and Geoinformation, 2018, 73, 420- 427.
doi: 10.1016/j.jag.2018.07.001 |
|
LaRue E A, Downing A G, Saucedo S, et al. Diversity–volume relationships: adding structural arrangement and volume to species–area relationships across forest macrosystems. Ecography, 2023c, 10, e06723. | |
LaRue E A, Fahey R T, Alveshere B C, et al. A theoretical framework for the ecological role of three-dimensional structural diversity. Frontiers in Ecology and the Environment, 2023b, 21 (1): 4- 13.
doi: 10.1002/fee.2587 |
|
LaRue E A, Fahey R, Fuson T L, et al. Evaluating the sensitivity of forest structural diversity characterization to LiDAR point density. Ecosphere, 2022, 13 (9): 4209.
doi: 10.1002/ecs2.4209 |
|
LaRue E A, Hardiman B S, Elliott J M, et al. Structural diversity as a predictor of ecosystem function. Environmental Research Letters, 2019, 14 (11): 114011.
doi: 10.1088/1748-9326/ab49bb |
|
LaRue E A, Knott J A, Domke G M, et al. Structural diversity as a reliable and novel predictor for ecosystem productivity. Frontiers in Ecology and the Environment, 2023a, 21 (1): 33- 39.
doi: 10.1002/fee.2586 |
|
LaRue E, Wagner F, Fei S L, et al. Compatibility of aerial and terrestrial LiDAR for quantifying forest structural diversity. Remote Sensing, 2020, 12 (9): 1407.
doi: 10.3390/rs12091407 |
|
Latham P A, Zuuring H R, Coble D W. A method for quantifying vertical forest structure. Forest Ecology and Management, 1998, 104 (1/2/3): 157- 170. | |
Li S, Wang T M, Hou Z Y, et al. Harnessing terrestrial laser scanning to predict understory biomass in temperate mixed forests. Ecological Indicators, 2021, 121, 107011.
doi: 10.1016/j.ecolind.2020.107011 |
|
Li X, Zhou X, Xu S. Individual tree reconstruction based on circular truncated cones from portable LiDAR scanner data. IEEE Geoscience and Remote Sensing Letters, 2023, 20, 6500105. | |
Lian Z H, Wang J, Fan C Y, et al. Structure complexity is the primary driver of functional diversity in the temperate forests of northeastern China. Forest Ecosystems, 2022, 9, 100048.
doi: 10.1016/j.fecs.2022.100048 |
|
Lin C. Improved derivation of forest stand canopy height structure using harmonized metrics of full-waveform data. Remote Sensing of Environment, 2019, 235, 111436.
doi: 10.1016/j.rse.2019.111436 |
|
Listopad C M C S, Masters R E, Drake J, et al. Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes. Ecological Indicators, 2015, 57, 268- 279.
doi: 10.1016/j.ecolind.2015.04.017 |
|
Liu L X, Coops N C, Aven N W, et al. Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data. Remote Sensing of Environment, 2017a, 200, 170- 182.
doi: 10.1016/j.rse.2017.08.010 |
|
Liu L X, Pang Y, Li Z Y, et al. Combining airborne and terrestrial laser scanning technologies to measure forest understorey volume. Forests, 2017b, 8 (4): 111.
doi: 10.3390/f8040111 |
|
Liu X Q, Feng Y H, Hu T Y, et al. Enhancing ecosystem productivity and stability with increasing canopy structural complexity in global forests. Science Advances, 2024, 10 (20): eadl1947.
doi: 10.1126/sciadv.adl1947 |
|
Liu X Q, Ma Q, Wu X Y, et al. A novel entropy-based method to quantify forest canopy structural complexity from multiplatform LiDAR point clouds. Remote Sensing of Environment, 2022, 282, 113280.
doi: 10.1016/j.rse.2022.113280 |
|
Liu X, Frey J, Munteanu C, et al. Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data. Remote Sensing of Environment, 2023, 292, 113576.
doi: 10.1016/j.rse.2023.113576 |
|
Lopatin J, Dolos K, Hernández H J, et al. Comparing generalized linear models and random forest to model vascular plant species richness using LiDAR data in a natural forest in central Chile. Remote Sensing of Environment, 2016, 173, 200- 210.
doi: 10.1016/j.rse.2015.11.029 |
|
Ma J, Li J W, Wu W B, et al. Global forest fragmentation change from 2000 to 2020. Nature Communications, 2023, 14 (1): 3752.
doi: 10.1038/s41467-023-39221-x |
|
Ma L X, Zheng G, Wang X F, et al. Retrieving forest canopy clumping index using terrestrial laser scanning data. Remote Sensing of Environment, 2018, 210, 452- 472.
doi: 10.1016/j.rse.2018.03.034 |
|
Ma Q, Su Y J, Hu T Y, et al. 2022. The coordinated impact of forest internal structural complexity and tree species diversity on forest productivity across forest biomes. Fundamental Research, | |
MacArthur R, MacArthur J W. On bird species diversity. Ecology, 1961, 42, 594- 598.
doi: 10.2307/1932254 |
|
Maeda E E, Nunes M H, Calders K, et al. Shifts in structural diversity of Amazonian forest edges detected using terrestrial laser scanning. Remote Sensing of Environment, 2022, 271, 112895.
doi: 10.1016/j.rse.2022.112895 |
|
Marselis S M, Abernethy K, Alonso A, et al. Evaluating the potential of full-waveform LiDAR for mapping pan-tropical tree species richness. Global Ecology and Biogeography, 2020, 29 (10): 1799- 1816.
doi: 10.1111/geb.13158 |
|
Marselis S M, Keil P, Chase J M, et al. The use of GEDI canopy structure for explaining variation in tree species richness in natural forests. Environmental Research Letters, 2022, 17 (4): 045003.
doi: 10.1088/1748-9326/ac583f |
|
Marselis S M, Tang H, Armston J D, et al. Distinguishing vegetation types with airborne waveform LiDAR data in a tropical forest-savanna mosaic: a case study in Lopé National Park, Gabon. Remote Sensing of Environment, 2018, 216, 626- 634.
doi: 10.1016/j.rse.2018.07.023 |
|
Marselis S M, Tang H, Armston J, et al. Exploring the relation between remotely sensed vertical canopy structure and tree species diversity in Gabon. Environmental Research Letters, 2019, 14 (9): 094013.
doi: 10.1088/1748-9326/ab2dcd |
|
Martin M, Valeria O. “Old” is not precise enough: airborne laser scanning reveals age-related structural diversity within old-growth forests. Remote Sensing of Environment, 2022, 278, 113098.
doi: 10.1016/j.rse.2022.113098 |
|
Mauya E W. Modelling and predicting measures of tree species diversity using airborne laser scanning data in miombo woodlands of Tanzania. Tanzania Journal of Forestry and Nature Conservation, 2021, 90 (1): 1- 17. | |
Meyer L, Diniz-Filho J A F, Lohmann L G, et al. Canopy height explains species richness in the largest clade of Neotropical lianas. Global Ecology and Biogeography, 2020, 29 (1): 26- 37.
doi: 10.1111/geb.13004 |
|
Michałowska M, Rapiński J. A review of tree species classification based on airborne LiDAR data and applied classifiers. Remote Sensing, 2021, 13 (3): 353.
doi: 10.3390/rs13030353 |
|
Morin D, Planells M, Baghdadi N, et al. Improving heterogeneous forest height maps by integrating GEDI-based forest height information in a multi-sensor mapping process. Remote Sensing, 2022, 14 (9): 2079.
doi: 10.3390/rs14092079 |
|
Mura M, McRoberts R E, Chirici G, et al. Estimating and mapping forest structural diversity using airborne laser scanning data. Remote Sensing of Environment, 2015, 170, 133- 142.
doi: 10.1016/j.rse.2015.09.016 |
|
Mura M, McRoberts R E, Chirici G, et al. Statistical inference for forest structural diversity indices using airborne laser scanning data and the k-Nearest Neighbors technique. Remote Sensing of Environment, 2016, 186, 678- 686.
doi: 10.1016/j.rse.2016.09.010 |
|
Narine L, Malambo L, Popescu S. Characterizing canopy cover with ICESat-2: a case study of southern forests in Texas and Alabama, USA. Remote Sensing of Environment, 2022, 281, 113242.
doi: 10.1016/j.rse.2022.113242 |
|
Nunes M H, Camargo J L C, Vincent G, et al. Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nature Communications, 2022, 13 (1): 917.
doi: 10.1038/s41467-022-28490-7 |
|
Ouyang S, Gou M M, Lei P F, et al. Plant functional trait diversity and structural diversity co-underpin ecosystem multifunctionality in subtropical forests. Forest Ecosystems, 2023, 10, 100093.
doi: 10.1016/j.fecs.2023.100093 |
|
Ozdemir I, Donoghue D N M. Modelling tree size diversity from airborne laser scanning using canopy height models with image texture measures. Forest Ecology and Management, 2013, 295, 28- 37.
doi: 10.1016/j.foreco.2012.12.044 |
|
Parada-Díaz J, Fernández López Á B, Gómez González L A, et al. Assessing the usefulness of LiDAR for monitoring the structure of a montane forest on a subtropical oceanic island. Remote Sensing, 2022, 14 (4): 994.
doi: 10.3390/rs14040994 |
|
Paris C, Kelbe D, van Aardt J, et al. A novel automatic method for the fusion of ALS and TLS LiDAR data for robust assessment of tree crown structure. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (7): 3679- 3693.
doi: 10.1109/TGRS.2017.2675963 |
|
Pascual A, de-Miguel S. Evaluation of mushroom production potential by combining spatial optimization and LiDAR-based forest mapping data. Science of the Total Environment, 2022, 850, 157980.
doi: 10.1016/j.scitotenv.2022.157980 |
|
Polewski P, Yao W, Heurich M, et al. Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105, 252- 271.
doi: 10.1016/j.isprsjprs.2015.01.010 |
|
Potapov P, Li X Y, Hernandez-Serna A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 2021, 253, 112165.
doi: 10.1016/j.rse.2020.112165 |
|
Ren C Y, Jiang H L, Xi Y B, et al. Quantifying temperate forest diversity by integrating GEDI LiDAR and multi-temporal Sentinel-2 imagery. Remote Sensing, 2023, 15 (2): 375.
doi: 10.3390/rs15020375 |
|
Rocchini D, Luque S, Pettorelli N, et al. Measuring β-diversity by remote sensing: a challenge for biodiversity monitoring. Methods in Ecology and Evolution, 2018, 9 (8): 1787- 1798.
doi: 10.1111/2041-210X.12941 |
|
Rocha K D, Silva C A, Cosenza D N, et al. Crown-level structure and fuel load characterization from airborne and terrestrial laser scanning in a longleaf pine (Pinus palustris Mill. ) forest ecosystem. Remote Sensing, 2023, 15 (4): 1002.
doi: 10.3390/rs15041002 |
|
Rodda S R, Nidamanuri R R, Fararoda R, et al. Evaluation of height metrics and above-ground biomass density from GEDI and ICESat-2 over Indian tropical dry forests using airborne LiDAR data. Journal of the Indian Society of Remote Sensing, 2024, 52 (4): 841- 856.
doi: 10.1007/s12524-023-01693-1 |
|
Seidel D, Ehbrecht M, Annighöfer P, et al. 2019. From tree to stand-level structural complexity: which properties make a forest stand complex? Agricultural and Forest Meteorology, 278: 107699. | |
Shao G, Iannone B V, Fei S L. Enhanced forest interior estimations utilizing LiDAR-assisted 3D forest cover map. Ecological Indicators, 2018, 93, 1236- 1243.
doi: 10.1016/j.ecolind.2018.06.037 |
|
Shen X Y, Huang Q Q, Wang X, et al. A deep learning-based method for extracting standing wood feature parameters from terrestrial laser scanning point clouds of artificially planted forest. Remote Sensing, 2022, 14 (15): 3842.
doi: 10.3390/rs14153842 |
|
Shoot C, Andersen H E, Moskal L M, et al. Classifying forest type in the national forest inventory context with airborne hyperspectral and LiDAR data. Remote Sensing, 2021, 13 (10): 1863.
doi: 10.3390/rs13101863 |
|
Silva C A, Duncanson L, Hancock S, et al. Fusing simulated GEDI, ICESat-2 and NISAR data for regional aboveground biomass mapping. Remote Sensing of Environment, 2021, 253, 112234.
doi: 10.1016/j.rse.2020.112234 |
|
Singh K K, Davis A J, Meentemeyer R K. Detecting understory plant invasion in urban forests using LiDAR. International Journal of Applied Earth Observation and Geoinformation, 2015, 38, 267- 279.
doi: 10.1016/j.jag.2015.01.012 |
|
Song J L, Zhu X, Qi J B, et al. A method for quantifying understory leaf area index in a temperate forest through combining small footprint full-waveform and point cloud LiDAR data. Remote Sensing, 2021, 13 (15): 3036.
doi: 10.3390/rs13153036 |
|
Stein A, Gerstner K, Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 2014, 17 (7): 866- 880.
doi: 10.1111/ele.12277 |
|
Sumnall M J, Hill R A, Hinsley S A. Comparison of small-footprint discrete return and full waveform airborne LiDAR data for estimating multiple forest variables. Remote Sensing of Environment, 2016, 173, 214- 223.
doi: 10.1016/j.rse.2015.07.027 |
|
Sun Y, Huang J F, Ao Z R, et al. Deep learning approaches for the mapping of tree species diversity in a tropical wetland using airborne LiDAR and high-spatial-resolution remote sensing images. Forests, 2019, 10 (11): 1047.
doi: 10.3390/f10111047 |
|
Szostak M, Pająk M. LiDAR point clouds usage for mapping the vegetation cover of the “fryderyk” mine repository. Remote Sensing, 2022, 15 (1): 201.
doi: 10.3390/rs15010201 |
|
Tanabe S I, Toda M J, Vinokurova A V. Tree shape, forest structure and diversity of drosophilid community: Comparison between boreal and temperate birch forests. Ecological Research, 2001, 16 (3): 369- 385.
doi: 10.1046/j.1440-1703.2001.00402.x |
|
Tatum J, Wallin D. Using discrete-point LiDAR to classify tree species in the riparian Pacific northwest, USA. Remote Sensing, 2021, 13 (14): 2647.
doi: 10.3390/rs13142647 |
|
Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change. Nature, 2004, 427 (6970): 145- 148.
doi: 10.1038/nature02121 |
|
Tijerín-Triviño J, Moreno-Fernández D, Zavala M A, et al. Identifying forest structural types along an aridity gradient in peninsular Spain: integrating low-density LiDAR, forest inventory, and aridity index. Remote Sensing, 2022, 14 (1): 235.
doi: 10.3390/rs14010235 |
|
Torresan C, Corona P, Scrinzi G, et al. Using classification trees to predict forest structure types from LiDAR data. Annals of Forest Research, 2016, 59 (1): 281- 298. | |
Torresani M, Rocchini D, Alberti A, et al. LiDAR GEDI derived tree canopy height heterogeneity reveals patterns of biodiversity in forest ecosystems. Ecological Informatics, 2023, 76, 102082.
doi: 10.1016/j.ecoinf.2023.102082 |
|
Torresani M, Rocchini D, Sonnenschein R, et al. Height variation hypothesis: a new approach for estimating forest species diversity with CHM LiDAR data. Ecological Indicators, 2020, 117, 106520.
doi: 10.1016/j.ecolind.2020.106520 |
|
Vaglio Laurin G, Puletti N, Chen Q, et al. Above ground biomass and tree species richness estimation with airborne LiDAR in tropical Ghana forests. International Journal of Applied Earth Observation and Geoinformation, 2016, 52, 371- 379.
doi: 10.1016/j.jag.2016.07.008 |
|
Valbuena R, Maltamo M, Packalen P. Classification of multilayered forest development classes from low-density national airborne LiDAR datasets. Forestry: an International Journal of Forest Research, 2016, 89 (4): 392- 401.
doi: 10.1093/forestry/cpw010 |
|
Valbuena R, Packalén P, Martı´n-Fernández S, et al. Diversity and equitability ordering profiles applied to study forest structure. Forest Ecology and Management, 2012, 276, 185- 195.
doi: 10.1016/j.foreco.2012.03.036 |
|
Van Ewijk K Y. 2015. Estimating forest structure from LiDAR and high spatial resolution imagery for the prediction of succession and species composition. Queen’s University. | |
Walter J A, Stovall A E L, Atkins J W. Vegetation structural complexity and biodiversity in the Great Smoky Mountains. Ecosphere, 2021, 12 (3): e03390.
doi: 10.1002/ecs2.3390 |
|
Wang C J, Elmore A J, Numata I, et al. A framework for improving wall-to-wall canopy height mapping by integrating GEDI LiDAR. Remote Sensing, 2022, 14 (15): 3618.
doi: 10.3390/rs14153618 |
|
Wang M X, Calders K, Verbeeck H, et al. Exploring the influence of tree species richness on vertical structure variability in young plantations using terrestrial laser scanning. Forest Ecology and Management, 2024, 554, 121662.
doi: 10.1016/j.foreco.2023.121662 |
|
Wang R, Gamon J A. Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 2019, 231, 111218.
doi: 10.1016/j.rse.2019.111218 |
|
Wang Y, Fang H L. Estimation of LAI with the LiDAR technology: a review. Remote Sensing, 2020, 12 (20): 3457.
doi: 10.3390/rs12203457 |
|
Wang Z G, Ye W H, Cao H L, et al. Species–topography association in a species-rich subtropical forest of China. Basic and Applied Ecology, 2009, 10 (7): 648- 655.
doi: 10.1016/j.baae.2009.03.002 |
|
Windrim L, Bryson M. Detection, segmentation, and model fitting of individual tree stems from airborne laser scanning of forests using deep learning. Remote Sensing, 2020, 12 (9): 1469.
doi: 10.3390/rs12091469 |
|
Xi Y B, Tian Q J, Zhang W M, et al. Quantifying understory vegetation density using multi-temporal Sentinel-2 and GEDI LiDAR data. GIScience & Remote Sensing, 2022, 59 (1): 2068- 2083. | |
Yang Z Z, Shu Q T, Zhang L S, et al. Forest tree species diversity mapping using ICESat-2/ATLAS with GF-1/PMS imagery. Forests, 2023, 14 (8): 1537.
doi: 10.3390/f14081537 |
|
Yi X X, Wang N N, Ren H, et al. From canopy complementarity to asymmetric competition: The negative relationship between structural diversity and productivity during succession. Journal of Ecology, 2021, 110 (2): 457- 465. | |
Yrttimaa T, Saarinen N, Luoma V, et al. Detecting and characterizing downed dead wood using terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151, 76- 90.
doi: 10.1016/j.isprsjprs.2019.03.007 |
|
Yun Z X, Zheng G, Geng Q, et al. Dynamic stratification for vertical forest structure using aerial laser scanning over multiple spatial scales. International Journal of Applied Earth Observation and Geoinformation, 2022, 114, 103040.
doi: 10.1016/j.jag.2022.103040 |
|
Yun Z X, Zheng G, Monika Moskal L, et al. Stratifying forest overstory and understory using the Global Ecosystem Dynamic Investigation laser scanning data. International Journal of Applied Earth Observation and Geoinformation, 2023, 124, 103538.
doi: 10.1016/j.jag.2023.103538 |
|
Zeller L, Liang J J, Pretzsch H. Tree species richness enhances stand productivity while stand structure can have opposite effects, based on forest inventory data from Germany and the United States of America. Forest Ecosystems, 2018, 5, 4.
doi: 10.1186/s40663-017-0127-6 |
|
Zellweger F, Braunisch V, Baltensweiler A, et al. Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale. Forest Ecology and Management, 2013, 307, 303- 312.
doi: 10.1016/j.foreco.2013.07.023 |
|
Zellweger F, Morsdorf F, Purves R S, et al. Improved methods for measuring forest landscape structure: LiDAR complements field-based habitat assessment. Biodiversity and Conservation, 2014, 23 (2): 289- 307.
doi: 10.1007/s10531-013-0600-7 |
|
Zhang J, Huang S, Hogg E H, et al. Estimating spatial variation in Alberta forest biomass from a combination of forest inventory and remote sensing data. Biogeosciences, 2014, 11 (10): 2793- 2808.
doi: 10.5194/bg-11-2793-2014 |
|
Zhang J, Zhang Z C, Lutz J A, et al. Drone-acquired data reveal the importance of forest canopy structure in predicting tree diversity. Forest Ecology and Management, 2022, 505, 119945.
doi: 10.1016/j.foreco.2021.119945 |
|
Zhang L J, Zhang X X, Shao Z F, et al. Integrating Sentinel-1 and 2 with LiDAR data to estimate aboveground biomass of subtropical forests in northeast Guangdong, China. International Journal of Digital Earth, 2023, 16 (1): 158- 182.
doi: 10.1080/17538947.2023.2165180 |
|
Zhang Y, Chen H Y H, Taylor A R. Aboveground biomass of understorey vegetation has a negligible or negative association with overstorey tree species diversity in natural forests. Global Ecology and Biogeography, 2016, 25 (2): 141- 150.
doi: 10.1111/geb.12392 |
|
Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 2015, 103 (5): 1245- 1252.
doi: 10.1111/1365-2745.12425 |
|
Zhao D, Pang Y, Li Z Y, et al. Isolating individual trees in a closed coniferous forest using small footprint LiDAR data. International Journal of Remote Sensing, 2014, 35 (20): 7199- 7218.
doi: 10.1080/01431161.2014.967886 |
|
Zheng G, Ma L X, He W, et al. Assessing the contribution of woody materials to forest angular gap fraction and effective leaf area index using terrestrial laser scanning data. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54 (3): 1475- 1487.
doi: 10.1109/TGRS.2015.2481492 |
|
Zheng Z J, Schmid B, Zeng Y, et al. Remotely sensed functional diversity and its association with productivity in a subtropical forest. Remote Sensing of Environment, 2023, 290, 113530.
doi: 10.1016/j.rse.2023.113530 |
|
Zheng Z J, Zeng Y, Schneider F D, et al. Mapping functional diversity using individual tree-based morphological and physiological traits in a subtropical forest. Remote Sensing of Environment, 2021, 252, 112170.
doi: 10.1016/j.rse.2020.112170 |
|
Zhou X B, Li C G. Mapping the vertical forest structure in a large subtropical region using airborne LiDAR data. Ecological Indicators, 2023, 154, 110731.
doi: 10.1016/j.ecolind.2023.110731 |
|
Zhu X X, Nie S, Wang C, et al. Consistency analysis of forest height retrievals between GEDI and ICESat-2. Remote Sensing of Environment, 2022, 281, 113244.
doi: 10.1016/j.rse.2022.113244 |
[1] | Ri Lu,Chen Wang,Ye Chen,Xixi Xu,Yue Hu,Zheng Chen,Jiaxi Cao,Shuhong Wu,Ling Li,He Gao. Carbon Credit Measurement Method for Mangrove Conservation Carbon Sink Project: a Case Study of Futian Mangrove Nature Reserve in Shenzhen [J]. Scientia Silvae Sinicae, 2023, 59(3): 44-53. |
[2] | Meng Zhang,Xiuhua Fan,Qingmin Yue,Zhuoxiu Han,Yixin Huang. Effects of Biotic and Abiotic Factors on Productivity of Coniferous and Broad-LeavedMixed Forest in Jiaohe, Jilin Province [J]. Scientia Silvae Sinicae, 2023, 59(12): 71-77. |
[3] | Zhengya Jin,Chenyu Qian,Chengju Du,Tao Ma,Xiujun Wen,Cai Wang. Research Progress on the Interaction among Termites, Clay, and Ecological Environments [J]. Scientia Silvae Sinicae, 2023, 59(1): 143-150. |
[4] | Ye Li,Yonghong Shi,Xianjin Xu,Faju Jing,Zhenliang Shi,Guohu Liu,Diqiang Li. Preliminary Survey on the Diversity of Mammalian and Avian in the Non-Protected Area of Burhan Buda Mountain, Qinghai Province, with Infrared Camera-Trapping Technology [J]. Scientia Silvae Sinicae, 2022, 58(12): 155-163. |
[5] | Shuijin Yu,Juan Wang,Haiyan He,Chunyu Zhang,Xiuhai Zhao. Driving Factors of the Temporal Stability of Biomass of Mixed Broadleaf-Conifer Forest [J]. Scientia Silvae Sinicae, 2022, 58(11): 181-190. |
[6] | Jinhua Mo,Jia Li,Fang Liu,Xiaoguan Li,Diqiang Li. A Survey of Mammals and Birds Diversity in Jianfengling District of Hainan Province by Using Camera-Trapping [J]. Scientia Silvae Sinicae, 2019, 55(10): 203-210. |
[7] | Chen Lixia, Liu Huajin, Liu Yulin, Yang Peiyu, Zhang Guogang, Lu Jun. Analysis on the Variation of Waterbird Communities in Different Habitats of Khanka Lake in China [J]. Scientia Silvae Sinicae, 2019, 55(1): 56-65. |
[8] | Hao Minhui, Li Xiaoyu, Xia Mengjie, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Effects of Tending Felling on Functional and Phylogenetic Structures in a Multi-Species Temperate Secondary Forest at Jiaohe in Jilin Province [J]. Scientia Silvae Sinicae, 2018, 54(5): 1-9. |
[9] | Feng Qiya, Chen Chaofan, Qin Lin, He Yating, Wang Peng, Duan Yixuan, Wang Yafei, He Youjun. Effects of Different Management Models on Stand Structure and Plant Diversity of Natural Secondary Forests of Quercus Mongolica [J]. Scientia Silvae Sinicae, 2018, 54(1): 12-21. |
[10] | Zhai Wanlu, Zhong Zheke, Gao Guibin, Yang Huimin. Influence of Mulching Management on Soil Bacterial Structure and Diversity in Phyllostachys praecox Stands [J]. Scientia Silvae Sinicae, 2017, 53(9): 133-142. |
[11] | Liu Rentao, Zhu Fan. Effect of Afforested Shrubs on Ground-Dwelling Arthropod Diversity and Throphic Structure in Desertified Grassland Ecosystems [J]. Scientia Silvae Sinicae, 2016, 52(2): 91-98. |
[12] | Li Qiao, Lu Zhixing, Zhang Wei, Ma Yanyan, Feng Ping. Communities of Ground-Dwelling Ants in Different Plantation Forests in Arid-Hot Valleys of Jinsha River, Yunnan Province, China [J]. Scientia Silvae Sinicae, 2015, 51(8): 134-142. |
[13] | Gong Gutang, Niu Mu, Mu Changlong, Chen Junhua, Li Yanqiong, Zhu Zhifang, Zheng Shaowei. Impacts of Different Thinning Intensities on Growth of Cupressus funebris Plantation and Understory Plants [J]. Scientia Silvae Sinicae, 2015, 51(4): 8-15. |
[14] | Li Chaochan, Yi Yin, Quan Wenxuan, Tian Honghong. The Natural Volatile Components of Allelochemicals in the Wild Alpine Rhododendron Community [J]. Scientia Silvae Sinicae, 2015, 51(12): 35-44. |
[15] | Wang Qun, Fan Junrong. Discussion of Biodiversity Protection Regulation Problems under the Forest Carbon Sequestration Mechanism [J]. Scientia Silvae Sinicae, 2013, 49(9): 148-152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||