Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (3): 169-181.doi: 10.11707/j.1001-7488.LYKX20230440
• Research papers • Previous Articles Next Articles
Yongchao Bai1(),Weixiong Wang2,3,Baoxin Li1,Jingya Yang2,3,Qi Wang1,Rongfei Zhou4,Ben Niu2,3,Dong Pei1,*(
)
Received:
2023-09-23
Online:
2025-03-25
Published:
2025-03-27
Contact:
Dong Pei
E-mail:baiychao@163.com;pei.dong@caf.ac.cn
CLC Number:
Yongchao Bai,Weixiong Wang,Baoxin Li,Jingya Yang,Qi Wang,Rongfei Zhou,Ben Niu,Dong Pei. Juglans Leaf Necrosis: Disease Development and Influencing Factors[J]. Scientia Silvae Sinicae, 2025, 61(3): 169-181.
Table 1
Establishment of grading standards for IN and SN of JLN in Southern Xinjiang(Mean ± SE) %"
焦叶症等级 JLN grades | 发生率 Incidence | 严重度 Severity | 危害等级 Hazard grades | |||||||
实测值 Measured value (n= | 变异系数 Variation coefficient | 分级值 Interval values | 占比 Proportion | 实测值 Measured value (n=4 314) | 变异系数 Variation coefficient | 分级值 Interval values | 占比 Proportion | |||
Ⅰ | 14.04±8.89 | 63.32 | < 20 | 88.00 | 8.81±5.84 | 66.37 | < 10 | 69.37 | 轻度Mild | |
Ⅱ | 30.82±14.51 | 47.08 | 20~50 | 78.47 | 14.94±8.76 | 58.61 | 10~20 | 50.00 | 轻度Mild | |
Ⅲ | 52.65±19.84 | 37.68 | 50~70 | 56.84 | 23.92±10.74 | 44.88 | 20~30 | 45.24 | 中度Moderate | |
Ⅳ | 75.89±16.36 | 21.56 | 70~90 | 77.35 | 38.82±13.71 | 35.32 | 30-50 | 56.45 | 中度Moderate | |
Ⅴ | 94.25±8.20 | 8.70 | > 90 | 88.14 | 53.74±12.69 | 23.61 | > 50 | 53.00 | 重度Severe |
Fig.6
Symptoms of walnut leaves caused by the potential pathogenic fungal strains(14 days after the second inoculation) after the inoculation with symbiotic fungi A:The inoculation with strain A. alternata. B:The inoculation with strain D. glomerata. C:The inoculation with strain C. siamense. D:The inoculation with sterile distilled water. Scale bars: 1 cm."
鲍士旦. 2007. 土壤农化分析. 3版 北京: 中国农业出版社. | |
Bao Shidan. 2007. Soil agrochemical analysis. Third Edition. Beijing: China Agriculture Press. [in Chinese] | |
陈述庭, 马万占, 温桂华, 等. 板栗叶片焦枯症病因鉴定与防治研究. 河北果树, 2003, (3): 11- 13.
doi: 10.3969/j.issn.1006-9402.2003.03.007 |
|
Chen S T, Ma W Z, Wen G H, et al. Study on pathogeny and controlling technologies of shrivelled leaves of Chinese chestnut. Hebei Fruits, 2003, (3): 11- 13.
doi: 10.3969/j.issn.1006-9402.2003.03.007 |
|
程宇豪, 黄小贞, 张金峰, 等. 贵州茶叶斑点病病原系统发育学分析与生物学特性. 分子植物育种, 2022, 20 (13): 4468- 4476. | |
Cheng Y H, Huang X Z, Zhang J F, et al. Phylogenetic analysis and biological characteristics of tea leaf spot disease in Guizhou. Molecular Plant Breeding, 2022, 20 (13): 4468- 4476. | |
高瑞霞. 2017. 新疆沙井子垦区环境因子对核桃焦叶病的影响. 阿拉尔: 塔里木大学. | |
Gao R X. 2017. Study on effect of environmental factors on disease of walnut leafscorch in Xinjiang Shajingzi region. Aral: Tarim University. [in Chinese] | |
宫峥嵘, 王一峰, 王 瀚, 等. 核桃矿质营养研究进展. 林业科学, 2021, 57 (1): 178- 190.
doi: 10.11707/j.1001-7488.20210119 |
|
Gong Z R, Wang Y F, Wang H, et al. Research Progress on Mineral Nutrition of Walnut. Scientia Silvae Sinicae, 2021, 57 (1): 178- 190.
doi: 10.11707/j.1001-7488.20210119 |
|
韩 敏, 蒋 萍. 核桃叶斑病病原菌的分子鉴定. 新疆农业科学, 2015, 52 (1): 91- 96. | |
Han M, Jiang P. Identification of the pathogens of walnut leaf spot disease. Xinjiang Agricultural Sciences, 2015, 52 (1): 91- 96. | |
姬新颖, 唐佳莉, 李 敖, 等. 盐胁迫下不同基因型核桃实生幼苗生长及生理响应. 林业科学, 2024, 60 (2): 65- 77.
doi: 10.11707/j.1001-7488.LYKX20230164 |
|
Ji X Y, Tang J L, Li A, et al. Growth and physiological responses of walnut seedlings with different genotypes under salt ttress. Scientia Silvae Sinicae, 2024, 60 (2): 65- 77.
doi: 10.11707/j.1001-7488.LYKX20230164 |
|
贾桂燕, 王永杰, 陈志康, 等. 2022. 盐单胞菌DSM 16354T中新型耐盐基因的克隆及解析. 中国生物工程杂志, 42(3): 27−37. | |
Jia G Y, Wang Y J, Chen Z K, et al. 2022, loning and analysis of novel functional genes in Halomonas alkaliphila DSM 16354T. China Biotechnology, 42(3): 27−37. [in Chinese] | |
梁 智, 张计峰, 井 然, 等. 土壤及叶面调控对核桃“叶缘焦枯病”的防控效果. 新疆农业科学, 2014, 51 (9): 1652- 1657. | |
Liang Z, Zhang J F, Jing R, et al. The prevention effect of soil and foliar regulation on “leaf margin scorch disease” of walnut. Xinjiang Agricultural Sciences, 2014, 51 (9): 1652- 1657. | |
林雪坚, 吴光金, 陈贻金, 等. 枣树焦叶病病原及发病规律的研究. 中南林学院学报, 1993, (1): 58- 63. | |
Lin X J, Wu G J, Chen Y J, et al. Study on pathogen and occurrence of jujube leaf scorch. Journal of Central South Forestry University, 1993, (1): 58- 63. | |
李冰茹, 高 冲, 李 杨, 等. 水浴提取-正己烷净化-离子色谱法测定三七中氯离子的含量. 理化检验-化学分析, 2023, 59 (2): 210- 214. | |
Li B R, Gao C, Li Y, et al. Determination of chloride ion in panax notoginseng by ion chromatography with water bath extraction and n-hexane purification. Physical Testing and Chemical Analysis(Part B: Chemical Analysis, 2023, 59 (2): 210- 214. | |
李 源, 马文强, 朱占江, 等. 2019. 新疆核桃产业发展现状及对策建议. 农学学报, 9(7): 80−86. | |
Li Y, Ma W Q, Zhu Z J, et al. 2019, . Development status of walnut industry in Xinjiang and suggestions for countermeasures. Journal of Agriculture, 9(7): 80−86. [in Chinese] | |
门中华. 2004. 冬小麦硝态氮利用的生理特征及其影响因素. 杨凌: 西北农林科技大学. | |
Men Z H. 2004. Physiological characteristics and influence factor of nitrate-N use of winter wheat. Yangling: Northwest A&F University. [in Chinese] | |
任 菲, 董 炜, 史胜青, 等. 板栗叶焦枯病相关病菌分离及病因初探. 林业科学研究, 2021, 34 (2): 185- 192. | |
Ren F, Dong W, Shi S Q, et al. Primary study on causes and associated pathogens for chestnut leaf scorch. Forest Research, 2021, 34 (2): 185- 192. | |
王 杰, 徐方媛, 蒋 萍, 等. 主要气象因子对核桃叶斑病发生动态的影响. 西北林学院学报, 2019, 34 (5): 127- 133.
doi: 10.3969/j.issn.1001-7461.2019.05.20 |
|
Wang J, Xu F Y, Jiang P, et al. Infiuence of the key meteorological factors on the occurrence dynamics of walnut leaf spot disease. Journal of Northwest Forestry University, 2019, 34 (5): 127- 133.
doi: 10.3969/j.issn.1001-7461.2019.05.20 |
|
徐秉良, 曹克强. 2017. 植物病理学. 第二版. 北京: 中国林业出版社. | |
Xu B L, Cao K Q. 2017. Plant pathology. Second edition. Beijing: China Forestry Publishing House. [in Chinese] | |
严兆福. 1994. 新疆的核桃. 乌鲁木齐: 新疆科技卫生出版社. | |
Yan Z F. 1994. Xinjiang walnut. Urumqi: Xinjiang Science and Technology Health Publishing. [in Chinese] | |
张小雪, 巫伟峰, 傅振星, 等. ‘芙蓉李’焦叶症与矿质元素含量的关联性. 福建农林大学学报(自然科学版), 2020, 49 (6): 760- 765. | |
Zhang X X, Wu W F, Fu Z X, et al. Correlation analysis between leaf scorch and mineral element contents in plum fruit cv. ‘Furongli’. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2020, 49 (6): 760- 765. | |
张计峰, 梁 智, 邹耀湘, 等. 新疆南疆核桃叶缘焦枯病成因分析研究. 新疆农业科学, 2012, 49 (7): 1261- 1265.
doi: 10.6048/j.issn.1001-4330.2012.07.014 |
|
Zhang J F, Liang Z, Zou Y X, et al. Study on causation of walnut withered leaf symptom in Southern Xinjiang. Xinjiang Agricultural Sciences, 2012, 49 (7): 1261- 1265.
doi: 10.6048/j.issn.1001-4330.2012.07.014 |
|
Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55, 373- 99.
doi: 10.1146/annurev.arplant.55.031903.141701 |
|
Alscher R G, Donahue J L, Cramer C L. Reactive oxygen species and antioxidants: relationships in green cells. Physiologia Plantarum, 1997, 100 (2): 224- 233.
doi: 10.1111/j.1399-3054.1997.tb04778.x |
|
Bulgarelli D, Rott M, Schlaeppi K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012, 488 (7409): 91- 95.
doi: 10.1038/nature11336 |
|
Brown R W, Chadwick D R, Zang H, et al. Use of metabolomics to quantify changes in soil microbial function in response to fertilizer nitrogen supply and extreme drought. Soil Biology and Biochemistry, 2021, 160, 108351.
doi: 10.1016/j.soilbio.2021.108351 |
|
Beckers B, Beeck M O D, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017, 5, 25.
doi: 10.1186/s40168-017-0241-2 |
|
Bechtold U, Karpinski S, Mullineaux P M. 2005. The influence of the light environment and photosynthesis on oxidative signalling responses in plant–biotrophic pathogen interactions. Plant, Cell & Environment, 28(8): 1046−1055. | |
Baki G K A E, Siefritz F, Man H M, et al. 2000. Nitrate reductase in Zea mays L. under salinity. Plant, Cell & Environment, 23(5): 515−521. | |
Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 2003, 91 (2): 179- 194.
doi: 10.1093/aob/mcf118 |
|
Bolyen E, Rideout J R, Dillon M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 2019, 37 (8): 852- 857.
doi: 10.1038/s41587-019-0209-9 |
|
Briat J F, Dubos C, Gaymard F. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 2015, 20 (1): 33- 40.
doi: 10.1016/j.tplants.2014.07.005 |
|
Cui W L, Lu X Q, Bian J Y, et al. Curvularia spicifera and Curvularia muehlenbeckiae causing leaf blight on Cunninghamia lanceolata. Plant Pathology, 2020, 69, 1139- 1147.
doi: 10.1111/ppa.13198 |
|
Cregger M A, Veach A M, Yang Z K, et al. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome. Microbiome, 2018, 6, 31.
doi: 10.1186/s40168-018-0413-8 |
|
Chen S F, Lombard L, Roux J, et al. Novel species of Calonectria associated with Eucalyptus leaf blight in Southeast China. Persoonia Molecular Phylogeny & Evolution of Fungi, 2011a, 26 (1): 1- 12. | |
Chen L, Han Y, Jiang H. et al. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. Journal of Experimental Botany, 2011b, 62, 5037- 5050.
doi: 10.1093/jxb/err203 |
|
Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses. Cellular and Molecular Life Sciences CMLS, 2000, 57 (5): 779- 795.
doi: 10.1007/s000180050041 |
|
Flowers T J, Colmer T D. 2008. Salinity tolerance in halophytes. New Phytologist, 945−963. | |
Flowers T J, Yeo A R. Ion relations of plants under drought and salinity. Functional Plant Biology, 1986, 13 (1): 75- 91.
doi: 10.1071/PP9860075 |
|
Gurtovenko A A, Vattulainen I. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution. The Journal of Physical Chemistry B, 2009, 113 (20): 7194- 7198.
doi: 10.1021/jp902794q |
|
Hassani A, Azapagic A, Shokri N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences, 2020, 117 (52): 33017- 33027.
doi: 10.1073/pnas.2013771117 |
|
Hu L, Lu H, Liu Q, et al. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology, 2005, 25 (10): 1273- 1281.
doi: 10.1093/treephys/25.10.1273 |
|
Liu M, Bi J W, Liu X C, et al. Microstructural and physiological responses to cadmium stress under different nitrogen levels in Populus cathayana females and males. Tree Physiology, 2020, 40, 30- 45.
doi: 10.1093/treephys/tpz115 |
|
Liu Y, Maniero R A, Giehi R F H, et al. PDX1.1-dependent biosynthesis of vitamin B6 protects roots from ammonium-induced oxidative stress. Molecular Plant, 2022, 15, 820- 839.
doi: 10.1016/j.molp.2022.01.012 |
|
Lombard L, Chen S F, Mou X, et al. New species, hyper-diversity and potential importance of Calonectria spp. from Eucalyptus in South China. Studies in Mycology, 2015, 80 (80): 151- 188. | |
Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9 (10): 490- 498.
doi: 10.1016/j.tplants.2004.08.009 |
|
Møller I M, Sweetlove L J. ROS signalling–specificity is required. Trends in Plant Science, 2010, 15 (7): 370- 374.
doi: 10.1016/j.tplants.2010.04.008 |
|
Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59, 651.
doi: 10.1146/annurev.arplant.59.032607.092911 |
|
Munns R, James R A, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 2006, 57 (5): 1025- 1043.
doi: 10.1093/jxb/erj100 |
|
Nath K, Lu Y. A paradigm of reactive oxygen species and programmed cell death in plants. Journal of Cell Science and Therapy, 2015, 6 (2): 1- 2. | |
Nakahara H, Matsuzoe N, Taniguchi T, et al. Effect of Burkholderia sp. and Pseudomonas spp. inoculation on growth, yield, and absorption of inorganic components in tomato ‘Micro-Tom’ under salinity conditions. Journal of Plant Interactions, 2022, 17 (1): 277- 289.
doi: 10.1080/17429145.2022.2035439 |
|
Niu B, Paulson J N, Zheng X, et al. Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences, 2017, 114 (12): E2450- E2459. | |
Ramos D E. 1998. Walnut production manual. Oakland: University of California Division of Agriculture and Natural Resources, Cooperative Extension. | |
Ryosuke F, Yasuko J, Takashi I, et al. 2002. Haliangium ochraceum gen. nov., sp. nov. and Haliangium tepidum sp. nov. : novel moderately halophilic myxobacteria isolated from coastal saline environments. Journal of General and Applied Microbiology, 48(2): 109−116. | |
Wu L, Wang Y, Zhang S, et al. Fertilization effects on microbial community composition and aggregate formation in saline-alkaline soil. Plant and Soil, 2021, 463 (1): 523- 535. | |
Wimmer M A, Mühling K H, Läuchli A, et al. 2003. The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves. Plant, Cell & Environment, 26(8): 1267−1274. | |
Xiao Q Y, Chen Y, Liu C W, et al. MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots. The EMBO Journal, 2021, e106847, 1- 22. | |
Yung L, Bertheau C, Tafforeau F, et al. Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site. Science of the Total Environment, 2021, 782, 146692.
doi: 10.1016/j.scitotenv.2021.146692 |
|
Zhang H M, Zhu J H, Gong Z Z, et al. Abiotic stress responses in plants. Nature Reviews Genetics, 2022, 23 (2): 104- 119.
doi: 10.1038/s41576-021-00413-0 |
|
Zhang J Y, Liu Y X, Zhang N, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 2019, 37, 676- 684.
doi: 10.1038/s41587-019-0104-4 |
[1] | Fei Ren,Jiaqi Zhang,Hengkang Hu,Bi Liang,Youjun Huang,Heqiang Lou,Qixiang Zhang. Expression Stability of Red Fluorescent Protein Gene DsRED in the Regeneration of Walnut (Juglans regia) Plant [J]. Scientia Silvae Sinicae, 2020, 56(12): 166-176. |
[2] | Bi Liang,Jiaqi Zhang,Fei Ren,Hengkang Hu,Chuanmei Xu,Yuanyuan Hu,Youjun Huang,Heqiang Lou,Qixiang Zhang. Cloning and Expression Analysis of Ent-Kaurene Oxidase Gene CcKo in Carya cathayensis [J]. Scientia Silvae Sinicae, 2020, 56(10): 70-82. |
[3] | Zhou Naifu, Song Xiaobo, Zhang Junpei, Chang Yingying, Pei Dong. Histological Mechanism of Bud Grafting in Walnut [J]. Scientia Silvae Sinicae, 2019, 55(6): 37-43. |
[4] | Zhang Jiaqi, Hu Hengkang, Xu Chuanmei, Hu Yuanyuan, Huang Youjun, Xia Guohua, Huang Jianqin, Chang Yingying, Ye Lei, Lou Heqiang, Zhang Qixiang. Cloning, Subcellular Localization and Function Verification of Gibberellin 2-Oxidase Gene in Walnut (Juglans regia) [J]. Scientia Silvae Sinicae, 2019, 55(2): 50-60. |
[5] | Hu Zhenzhu, Pan Cunde, Pan Xin, Zhu Baixue. Estimation Models for Water Content of Walnut Leaves Based on Spectral Moisture Index [J]. Scientia Silvae Sinicae, 2016, 52(12): 39-49. |
[6] | Gu Ruisheng;Xi Rongting;Tong Benqun. A STUDY ON THE WATER INDEXES OF EARLYFRUITING WALNUT [J]. , 1991, 27(4): 461-464. |
[7] | Tong Benqun;Hao Zhongying. THE PATTERN OF ENDOGENOUS HORMONES OF PISTILLATE FLOWER DIFFERENTIATION IN WALNUT (JUGLANS REGIA L.) [J]. , 1991, 27(4): 401-409. |
[8] | Yuan Qiaoping;Dong Maoshan;Christian Jay-Allemand. ORGANOGENESIS AND SOMATIC EMBRYOGENESIS FROM THE CULTURE OF WALNUT (JUGLANS REGIA L.) [J]. , 1990, 26(6): 495-499. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||