Scientia Silvae Sinicae ›› 2021, Vol. 57 ›› Issue (1): 161-168.doi: 10.11707/j.1001-7488.20210117
Previous Articles Next Articles
Fang Chen1,Xianbao Cheng2,Anmin Huang2,Xueshun Wang1,*
Received:
2019-09-11
Online:
2021-01-25
Published:
2021-03-10
Contact:
Xueshun Wang
CLC Number:
Fang Chen,Xianbao Cheng,Anmin Huang,Xueshun Wang. Elastic Modulus Prediction of Cunninghamia lanceolata Based on Artificial Bee Colony Algorithm SVM and NIR[J]. Scientia Silvae Sinicae, 2021, 57(1): 161-168.
Table 1
Result of grid search method"
参数搜索范围 Parameter search range | 最优的c Best c | 最优的g Best g | 均方根误差 RMSE | 决定系数 R2(%) |
2-4~24 | 2 | 0.062 50 | 3.679 4 | 92.069 0 |
2-5~25 | 4 | 0.031 25 | 3.528 1 | 93.530 0 |
2-6~26 | 4 | 0.015 62 | 4.253 3 | 91.392 4 |
2-7~27 | 11.313 7 | 0.007 81 | 4.936 8 | 89.296 5 |
2-8~28 | 11.313 7 | 0.007 81 | 4.936 8 | 89.296 5 |
郝勇, 商庆园, 饶敏, 等. 木材种类的近红外光谱和模式识别. 光谱学与光谱分析, 2019, 39 (3): 705- 710. | |
Hao Y , Shang Q Y , Rao M , et al. Identification of wood species based on near infrared spectroscopy and pattern recognition method. Spectroscopy and Spectral Analysis, 2019, 39 (3): 705- 710. | |
高雷阜, 佟盼. 融合改进遗传和人工蜂群的SVM参数优化算法. 计算机工程与应用, 2016a, 52 (18): 36- 39. | |
Gao L F , Tong P . Algorithm of SVM parameter optimization by combining improved genetic and artificial bee colony. Computer Engineering and Applications, 2016a, 52 (18): 36- 39. | |
高雷阜, 高晶, 赵世杰. 人工蜂群算法优化SVR的预测模型. 计算机工程与应用, 2016b, 52 (11): 55- 59. | |
Gao L F , Gao J , Zhao S J . Forecast model of SVR optimized by artificial bee colony algorithm. Computer Engineering and Applications, 2016b, 52 (11): 55- 59. | |
李璟民, 郭敏. 人工蜂群算法优化支持向量机的分类研究. 计算机工程与应用, 2015, 51 (2): 151- 155. | |
Li J M , Guo M . Study on classification of artificial bee colony algorithm to optimization of support vector machine. Computer Engineering and Applications, 2015, 51 (2): 151- 155. | |
刘渝根, 陈超. 基于人工蜂群算法优化支持向量机的接地网腐蚀速率预测模型. 电力自动化设备, 2019, 39 (5): 182- 186. | |
Liu Y G , Chen C . Corrosion rate prediction model of grounding grid based on support vector machine optimized by artificial bee colony algorithm. Electric Power Automation Equipment, 2019, 39 (5): 182- 186. | |
刘镇波, 刘一星, 于海鹏, 等. 实木板材的动态弹性模量检测. 林业科学, 2005, 41 (6): 126- 131. | |
Liu Z B , Liu Y X , Yu H P , et al. Research on the dynamic modulus of elasticity measurement of lumber. Scientia Silvae Sinicae, 2005, 41 (6): 126- 131. | |
毛莎莎, 曾明, 何绍兰, 等. 近红外光谱技术在水果成熟期预测中的应用. 亚热带植物科学, 2010, 39 (1): 82- 87, 96. | |
Mao S S , Zeng M , He S L , et al. Application of near infrared spectra(NIRS) technology in prediction of maturity stage of fruit. Subtropical Plant Science, 2010, 39 (1): 82- 87, 96. | |
谭念, 孙一丹, 王学顺, 等. 基于主成分分析和支持向量机的木材近红外光谱树种识别研究. 光谱学与光谱分析, 2017, 37 (11): 3370- 3374. | |
Tan N , Sun Y D , Wang X S , et al. Research on near infrared spectrum with principal component analysis and support vector machine for timber identification. Spectroscopy and Spectral Analysis, 2017, 37 (11): 3370- 3374. | |
谭念, 王学顺, 黄安民, 等. 基于灰狼算法SVM的NIR杉木密度预测. 林业科学, 2018, 54 (12): 137- 141. | |
Tan N , Wang X S , Huang A M , et al. Wood density prediction of Cunninghamia lanceolata based on gray wolf algorithm SVM and NIR. Scientia Silvae Sinicae, 2018, 54 (12): 137- 141. | |
王晓旭, 黄安民, 杨忠, 等. 近红外光谱用于杉木木材强度分等的研究. 光谱学与光谱分析, 2011, 31 (4): 975- 978. | |
Wang X X , Huang A M , Yang Z , et al. Study on the wood grading by near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2011, 31 (4): 975- 978. | |
王学顺. 2010. 近红外光谱信息提取及其在木材材性分析中的应用研究. 哈尔滨: 东北林业大学博士学位论文. | |
Wang X S. 2010. A study of NIR information extraction and its application in wood property analysis. Harbin: PhD thesis of Northeast Forestry University.[in Chinese] | |
汪紫阳, 尹世逵, 李春旭, 等. 可见/近红外光谱技术识别树叶树种的研究. 西北林学院学报, 2019, 34 (1): 229- 236, 260. | |
Wang Z Y , Yin S K , Li C X , et al. Identification of tree leaf and species by Vis/NIR spectroscopy. Journal of Northwest Forestry University, 2019, 34 (1): 229- 236, 260. | |
徐峰, 刘云飞, 潘惠新, 等. 基于声-超声技术的木材弹性模量测定方法研究. 振动与冲击, 2014, 33 (4): 210- 214. | |
Xu F , Liu Y F , Pan H X , et al. Wood elastic modulus determination based on acoustic-ultrasonic technique. Journal of Vibration and Shock, 2014, 33 (4): 210- 214. | |
杨双艳, 杨紫刚, 张四伟, 等. 基于近红外光谱和PSO-SVM算法的烟叶自动分级方法. 贵州农业科学, 2018, 46 (12): 141- 144. | |
Yang S Y , Yang Z G , Zhang S W , et al. Automatic grading method of tobacco leaves based on NIR technology and PSO-SVM algorithm. Guizhou Agricultural Sciences, 2018, 46 (12): 141- 144. | |
于仕兴. 2014. 基于智能算法的支持向量机结合木材近红外光谱应用研究. 北京: 北京林业大学硕士学位论文. | |
Yu S X. 2014. Support vector machine(SVM)based on intelligent algorithm combined with wood NIR application research. Beijing: MS thesis of Beijing Forestry University.[in Chinese] | |
张建强, 刘维涓, 侯英. 基于稀疏表示分类和近红外光谱的烟叶自动分级研究. 光谱学与光谱分析, 2018, 38 (S1): 23- 24. | |
Zhang J Q , Liu W J , Hou Y . Automatic discriminate the classes of tobacco leaves based on near-infrared spectroscopy and sparse representation classification algorithm. Spectroscopy and Spectral Analysis, 2018, 38 (S1): 23- 24. | |
赵荣军, 霍小梅, 张黎. 利用近红外光谱技术预测粗皮桉木材弹性模量. 光谱学与光谱分析, 2009, 29 (9): 2392- 2395. | |
Zhao R J , Huo X M , Zhang L . Estimation of modulus of elasticity of Eucalyptus pellita wood by near infrared spectroscopy. Spectroscopy and Spectral Analysis, 2009, 29 (9): 2392- 2395. | |
周志茹, 赵茂程, 王正. 意杨木材弹性模量3种方法检测的比较. 福建林学院学报, 2014, 34 (4): 368- 373. | |
Zhou Z R , Zhao M C , Wang Z . Comparative study of modulus of elasticity of Populus euramericana lumber with three nondestructive methods. Journal of Forest and Environment, 2014, 34 (4): 368- 373. | |
Brajevic I , Tuba M . An upgraded artificial bee colony(ABC)algorithm for constrained optimization problems. Journal of Intelligent Manufacturing, 2013, 24 (4): 729- 740. | |
Djemai S , Brahmi B , Bibi M O . A primal-dual method for SVM training. Neurocomputing, 2016, 211, 34- 40. | |
Jones P D , Schimleck L R , Peter G F , et al. Nondestructive estimation of wood chemical composition of sections of radial wood strips by near infrared spectroscopy. Wood Science & Technology, 2006, 40 (8): 709- 720. | |
Karaboga D. 2005. An idea based on honey bee swarm for numerical optimization. Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department. | |
Kelley S S , Rials T G , Groom L H , et al. Use of near infrared spectroscopy to predict the mechanical properties of six softwoods. Holzforschung, 2004, 58 (3): 252- 260. | |
Özparpucu M , Gierlinger N , Cesarino I , et al. Significant influence of lignin on axial elastic modulus of poplar wood at low microfibril angles under wet conditions. Journal of Experimental Botany, 2019, 70 (15): 4039- 4047. | |
Unler A , Murat A , Chinnam R B . mr2 PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Information Sciences, 2011, 181 (20): 4625- 4641. |
[1] | Wang Zheng, Fu Haiyan, Ding Yewei, Cao Yu, Wang Yunlu, Wu Xiaoli, Zhang Tongyue. Dynamic Testing of Shear Modulus and Elastic Modulus of Oriented Strand Board [J]. Scientia Silvae Sinicae, 2019, 55(8): 136-146. |
[2] | Mao Xuegang, Hou Jiyu, Fan Wenyi. Object-Based Automatic Recognition for Forest Gaps Using Aerial Image and LiDAR Data [J]. Scientia Silvae Sinicae, 2017, 53(11): 94-103. |
[3] | Xu Huadong, Wang Lihai, Song Shiquan. Two Dimensional Image Construction of Ultrasonic Wave for [J]. Scientia Silvae Sinicae, 2014, 50(8): 126-130. |
[4] | Zhang Yunwei, Hui Shang, Bu Xiaolei, Shang Shulei, Yang Chengming. Mechanical Characteristics of Tensile Strength for Three Monopodial Bamboo Single Roots [J]. Scientia Silvae Sinicae, 2013, 49(7): 183-187. |
[5] | Wu Yan;Zhou Dingguo;Wang Siqun;Xing Cheng;Zhang Yang. Nano-Mechanical Properties of the Cell Wall of Two Crop Straws [J]. Scientia Silvae Sinicae, 2010, 46(9): 140-143. |
[6] | Zhou ZhaobingXu ZhaoyangZhang YangWang Siqun. Dimension Parameters and Nanoindentation of Populus adenopoda Wood Cell [J]. Scientia Silvae Sinicae, 2010, 46(11): 138-143. |
[7] | Huang Yuxia;Xu Dongbei;Pu Su. Application of SVM Method on the Prediction of Forest Fire Danger [J]. Scientia Silvae Sinicae, 2007, 43(10): 77-82. |
[8] | Jiang Zehui;Yu Yan;Fei Benhua;Ren Haiqing;Zhang Taihua. Using Nanoindentation Technique to Determine the Longitudinal Elastic Modulus and Hardness of Tracheids Secondary Wall [J]. Scientia Silvae Sinicae, 2004, 40(2): 113-118. |
[9] | Hou Zhuqiang;Jiang Xiaomei;Luo Xiuqin;Jiang Zehui;Fei Benhua. MECHANICS OF WOOD CELL AND ESTIMATION OF LONGITUDINAL ELASTIC MODULUS OF SOFTWOOD——ESTIMATION OF LONGITUDINAL ELASTIC MODULUS OF SPECIMEN [J]. Scientia Silvae Sinicae, 2003, 39(2): 123-129. |
[10] | Xu Manqiong;Jin Guanchang;Lu Zhenyou. DIGITAL SPACKLE CORRELATION METHOD (DSCM) FOR MEASUREMENT OF WOOD COMPRESSION ELASTIC MODULUS [J]. Scientia Silvae Sinicae, 2003, 39(2): 174-176. |
[11] | Guan Chengru;Li Huiwu. TESTAND ANALYSIS ON THE ELASTIC MODULUS OF OVER-LONG SUSPENDED WIRE ROPES [J]. , 1989, 25(3): 228-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||