欢迎访问林业科学,今天是

林业科学 ›› 2025, Vol. 61 ›› Issue (12): 34-48.doi: 10.11707/j.1001-7488.LYKX20250230

• 前沿热点 • 上一篇    

油松纯林、辽东栎纯林与油松-辽东栎混交林土壤微生物源碳变化特征

周龙1,4,张麦芳2,董强2,朱慧男1,3,*(),刘金良1,4,*()   

  1. 1. 西北农林科技大学林学院 陕西省林业综合重点实验室 杨凌 712100
    2. 陕西省林业科学院黄土高原水土保持与生态修复国家林业和草原局重点实验室 西安 710016
    3. 秦岭大熊猫研究中心(陕西省珍稀野生动物救护基地) 西安 710082
    4. 陕西黄龙山森林生态系统定位观测研究站 延安 715701
  • 收稿日期:2025-04-14 修回日期:2025-09-08 出版日期:2025-12-25 发布日期:2026-01-08
  • 通讯作者: 朱慧男,刘金良 E-mail:geldwxh@163.com;liujinliang2016@nwafu.edu.cn
  • 基金资助:
    国家自然科学基金青年项目(32201548);陕西林业科技创新青年人才培育专项(SXLK2023–06–1)。

Characteristics of Soil Microbial-Derived Carbon Changes in Pinus tabuliformis Forest, Quercus wutaishanica Forest, and Their Mixed Forest

Long Zhou1,4,Maifang Zhang2,Qiang Dong2,Huinan Zhu1,3,*(),Jinliang Liu1,4,*()   

  1. 1. College of Forestry, Northwest A & F University Shaanxi Key Comprehensive Laboratory of Forestry Yangling 712100
    2. Key Laboratory of National Forestry and Grassland Administration on Soil and Water Conservation & Ecological Restoration of Loess Plateau, Shaanxi Academy of Forestry Xi’an 710016
    3. Qinling Giant Panda Research Center (Shaanxi Rare Wildlife Rescue Base) Xi’an 710082
    4. Shaanxi Huanglong Mountain Forest Ecosystem Positioning Research Station Yan’an 715701
  • Received:2025-04-14 Revised:2025-09-08 Online:2025-12-25 Published:2026-01-08
  • Contact: Huinan Zhu,Jinliang Liu E-mail:geldwxh@163.com;liujinliang2016@nwafu.edu.cn

摘要:

目的: 以陕西黄龙山林区油松-辽东栎混交林为研究对象,并以油松和辽东栎纯林为对照,分析不同林分类型下土壤微生物源碳(活体碳和残体碳)变化特征,探究油松-辽东栎混交林相较于纯林对土壤微生物源碳积累的影响,阐明驱动其变化的关键微生物功能机制,揭示调控该过程的关键环境因子。方法: 采用磷脂脂肪酸(PLFA)法测定微生物活体碳含量,氨基糖法测定微生物残体碳含量;运用微生物宏基因组测序技术,与Carbohydrate-Active enZYmes Database (CAZyme)和Kyoto Encyclopedia of Genes and Genomes (KEGG)数据库进行比对,获得并分析微生物碳分解功能基因特征;借助Mantel test分析,探究碳分解功能基因、土壤养分和微生物源碳的互作关系。基于数据分布特性,采用参数检验与非参数检验相结合的方法进行组间差异显著性分析和多重比较;数据统计分析与可视化使用R v4.2.1软件完成。结果: 1) 与油松和辽东栎纯林相比,油松-辽东栎混交可显著提高细菌(革兰氏阳性菌37.5%~54.9%)、真菌(子囊菌和担子菌35.7%~42.5%、丛枝菌根真菌23.7%~95.8%、接合菌57.8%~89.9%)和微生物(37.7%~55.1%)活体碳含量。2) 油松-辽东栎混交可显著提高土壤细菌残体碳含量(45.0%~56.7%)和微生物残体碳含量(20.2%~28.4%),并提升细菌残体碳(44.3%~59.9%)、真菌残体碳(15.3%~30.6%)和微生物残体碳(19.3%~34.7%)对有机碳库的贡献。3) 油松-辽东栎混交林下分解植物源碳(半纤维素、纤维素和木质素)和细菌源碳(肽聚糖)的CAZyme酶基因相对丰度介于油松纯林和辽东栎纯林之间,分解几丁质的CAZyme酶基因相对丰度高于纯林;KEGG碳分解功能基因表现出相似趋势。4) 细菌残体碳含量与放线菌活体碳含量(R = 0.65,P< 0.01)、厚壁菌活体碳含量(R = 0.60,P< 0.01)、革兰氏阴性菌活体碳含量(R = 0.67,P< 0.01)显著正相关;真菌残体碳含量与子囊菌和担子菌活体碳含量(R = 0.53,P< 0.05)、丛枝菌根真菌活体碳含量(R = 0.63,P< 0.05)、接合菌活体碳含量(R = 0.74,P< 0.01)显著正相关;微生物活体碳含量和残体碳含量均受土壤速效磷(AP)含量的显著影响;真菌活体碳含量∶细菌活体碳含量比值和真菌残体碳含量∶细菌残体碳含量比值均分别与分解植物源碳的CAZyme酶基因相对丰度和分解细菌源碳的CAZyme酶基因相对丰度显著正相关(P < 0.01)。结论: 油松-辽东栎混交能够显著提高细菌、真菌及微生物活体碳和残体碳含量,提升细菌残体碳、真菌残体碳和微生物残体碳含量对有机碳库的贡献。油松-辽东栎混交林中CAZyme酶基因相对丰度和碳降解功能基因绝对丰度介于油松纯林和辽东栎纯林之间,真菌活体碳含量∶细菌活体碳含量比值和真菌残体碳含量∶细菌残体碳含量比值均受CAZyme酶基因相对丰度和碳降解功能基因绝对丰度的影响。土壤中磷的有效性是影响微生物活体碳和残体碳积累的关键因素。

关键词: 油松-辽东栎混交林, 微生物残体碳, 磷脂脂肪酸, 碳降解基因, 微生物CAZyme家族

Abstract:

Objective: In this study, the Pinus tabuliformis-Quercus wutaishanica mixed forest in the Huanglong Mountain region of Shaanxi Province was taken as the research object, with pure stands of P. tabuliformis and Q. wutaishanica serving as controls. This study analyzed the variation characteristics of soil microbial source carbon (living biomass carbon and necromass carbon) under different stand types, and investigated the impact of P. tabuliformis-Q. wutaishanica mixed forests compared to the pure forests on soil microbial source carbon accumulation, aiming to elucidate the key microbial functional mechanisms driving these changes, and to identify the environmental factors regulating this process. Method: The phospholipid fatty acid (PLFA) method was used to determine microbial live biomass carbon content, and the amino sugar method was used to determine microbial necromass carbon content. Microbial metagenomic sequencing was employed, annotating against the Carbohydrate-Active Enzymes (CAZyme) database and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, to obtain and analyze the characteristics of microbial carbon-decomposition functional genes. Mantel test was conducted to explore the interactive relationships among carbon-decomposition functional genes, soil nutrients, and microbial derived carbon. Based on the distributional characteristics of the data, both parametric and nonparametric tests were applied to assess significant differences among groups and perform multiple comparisons. All statistical analyses and data visualizations were performed using R v4.2.1. Result: 1) Compared with pure P. tabuliformis and pure Q. wutaishanica stands, the mixed forests significantly increased the microbial PLFA biomass carbon content of bacteria (Gram-positive bacteria: 37.5%–54.9%), fungi (ascomycota and basidiomycota: 35.7%–42.5%; arbuscular mycorrhizal fungi: 23.7%–95.8%; zygomycota: 57.8%–89.9%), and total microorganisms (37.7%–55.1%). 2) The mixed forests significantly enhanced the content of bacterial necromass carbon (45.0%–56.7%) and total microbial necromass carbon (20.2%–28.4%), and increased the contributions of bacterial necromass carbon (44.3%–59.9%), fungal necromass carbon (15.3%–30.6%), and total microbial necromass carbon (19.3%–34.7%) to the soil organic carbon pool. 3) The relative abundance of CAZyme genes involved in the decomposition of plant-derived carbon (hemicellulose, cellulose, and lignin) and bacterial-derived carbon (peptidoglycan) in the P. tabuliformis-Q. wutaishanica mixed forests were intermediate between those in pure P. tabuliformis and pure Q. wutaishanica forests, while the relative abundance of chitin-degrading CAZyme genes was higher than in pure forests. KEGG functional genes related to carbon degradation exhibited a similar trend. 4) Bacterial necromas carbon content showed significant positive correlations with the PLFA biomass carbon content of actinobacteria (R = 0.65, P< 0.01), firmicutes (R = 0.60, P< 0.01), and Gram-negative bacteria (R = 0.67, P< 0.01). Fungal necromass carbon content was significantly positively correlated with the PLFA biomass carbon content of ascomycota and basidiomycota (R = 0.53, P< 0.05), arbuscular mycorrhizal fungi (R = 0.63, P< 0.05), and zygomycota (R = 0.74, P< 0.01). Both microbial PLFA biomass carbon and necromass carbon contents were significantly influenced by soil available phosphorus (AP) content. The fungal-to-bacterial PLFA biomass carbon ratio and the fungal-to-bacterial necromass carbon ratio were both significantly positively correlated (P< 0.01) with the relative abundance of CAZyme genes decomposing plant-derived carbon and bacterial-derived carbon, respectively. Conclusion: The mixture of P. tabuliformis and Q. wutaishanica can significantly increase the contents of bacterial, fungal, and microbial PLFA biomass carbon and necromass carbon, and also enhance the contribution of bacterial, fungal, and microbial necromass carbon to the soil organic carbon pool. In the mixed forests, the relative abundance of CAZyme genes and the absolute abundance of carbon-degrading functional genes are intermediate between those in pure P. tabuliformis and pure Q. wutaishanica forests. Both the fungal-to-bacterial PLFA biomass carbon ratio and the fungal-to-bacterial necromass carbon ratio are influenced by the relative abundance of CAZyme genes and the absolute abundance of carbon-degrading functional genes. Soil phosphorus availability is identified as a key factor regulating the accumulation of microbial PLFA biomass and necromass carbon.

Key words: Pinus tabuliformis-Quercus wutaishanica mixed forests, microbial necromass carbon, phospholipid fatty acids (PLFAs), carbon degrading genes, microbial CAZyme family

中图分类号: