林业科学 ›› 2025, Vol. 61 ›› Issue (10): 121-134.doi: 10.11707/j.1001-7488.LYKX20250293
• 研究论文 • 上一篇
崔罗敏1,2,王芝权1,孙晓威1,於朝广1,喻方圆2,殷云龙1,*(
)
收稿日期:2025-05-11
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
殷云龙
E-mail:yinyl066@sina.com
基金资助:
Luomin Cui1,2,Zhiquan Wang1,Xiaowei Sun1,Chaoguang Yu1,Fangyuan Yu2,Yunlong Yin1,*(
)
Received:2025-05-11
Online:2025-10-25
Published:2025-11-05
Contact:
Yunlong Yin
E-mail:yinyl066@sina.com
摘要:
目的: 台湾含笑具有优良的观赏价值及抗逆性,是优良的杂交亲本。本研究观测了台湾含笑的开花特征,探索了种间及属间杂交,为台湾含笑与近缘种及远缘种杂交育种提供理论指导。方法: 观察分析台湾含笑的开花特征和开花动态,柱头可授性,花粉母细胞减数分裂,并以台湾含笑为亲本进行了近缘及远缘杂交试验,对获得的杂种苗进行表型特征测定,同时运用SSR(simple sequence repeats)分子标记技术对杂交后代的真实性进行了鉴定。结果: 台湾含笑为雌雄异熟,但雌、雄性期存在短暂的重叠,并且没有二次开合现象,小孢子减数分裂基本正常,花粉具有较好的花粉萌发力;以台湾含笑为亲本的16个杂交组合中,台湾含笑与深山含笑,阔瓣含笑,红花深山含笑,金叶含笑均具有较高的杂交亲和性,与峨眉含笑杂交存在单向杂交亲和性现象,与玉兰属的属间正反交均败育;台湾含笑与红花深山含笑的杂种在苗期生长中表现出显著的杂种优势,并通过SSR分子标记鉴定杂种真实率为100%。结论: 综上得出,台湾含笑属内近缘种间杂交较为容易,与远缘种杂交较为困难。本研究为实现台湾含笑的杂交育种和种质创新提供了重要的理论基础,有望在未来培育出更多优良的含笑属新品种。
中图分类号:
崔罗敏,王芝权,孙晓威,於朝广,喻方圆,殷云龙. 台湾含笑的育种潜力[J]. 林业科学, 2025, 61(10): 121-134.
Luomin Cui,Zhiquan Wang,Xiaowei Sun,Chaoguang Yu,Fangyuan Yu,Yunlong Yin. Potential of Michelia compressa (Magnoliaceae) Breeding[J]. Scientia Silvae Sinicae, 2025, 61(10): 121-134.
表S1
含笑属与玉兰科其他属的属间杂交亲和性"
| 母本 Female | 父本 Male | 成功/失败 Success/fail | 参考文献 Reference |
| M. crassipes(CR) | M. fulva(FU) | + | |
| M. compressa(CO) | M. foveolata(FO) | + | |
| M. foveolata(FO) | M. yunnanensis(YU) | + | |
| M. maudiae(MA) | M. doltsopa(DO) | + | |
| M. skinneriana(SK) | M. crassipes(CR) | + | |
| M. cavaleriei var. platypetala(PL) | M. crassipes(CR) | + | |
| M. cavaleriei var. platypetala(PL) | M. guangdongensis(GU) | + | |
| M. cavaleriei var. platypetala(PL) | M. yunnanensis(YU) | + | |
| M. yunnanensis(YU) | M. maudiae(MA) | + | |
| M. yunnanensis(YU) | M. figo(FI) | + | |
| M. yunnanensis(YU) | M. doltsopa(DO) | + | |
| M. yunnanensis(YU) | M. skinneriana(SK) | + | |
| Y. acuminata(AC)a | M. figo(FI) | + | |
| Y. stellata(ST)a | M. cavaleriei var. platypetala(PL) | + | |
| M. champaca(CH) | M. crassipes(CR) | + | |
| M. crassipes(CR) | M. yunnanensis(YU) | + | |
| M. yunnanensis(YU) | M. foveolata(FO) | + | |
| M. yunnanensis(YU) | M. champaca(CH) | + | |
| Y. stellata(ST)a | M. skinneriana(SK) | + | |
| M. crassipes(CR) | M. yunnanensis(YU) | ? | |
| M. yunnanensis(YU) | M. crassipes(CR) | + | |
| M. crassipes(CR) | M. figo(FI) | + | |
| M. crassipes(CR) | M. maudiae(MA) | + | |
| M. crassipes(CR) | M. cavaleriei var. platypetala(PL) | ? | |
| M. crassipes(CR) | M. yunnanensis(YU) | + | |
| M. figo(FI) | M. fulva(FU) | + | |
| M. figo(FI) | M. yunnanensis(YU) | + | |
| M. fulva(FU) | M. yunnanensis(YU) | + | |
| M. fulva(FU) | M. figo(FI) | + | |
| M. fulva(FU) | M. foveolata(FO) | + | |
| M. fulva(FU) | M. crassipes(CR) | + | |
| M. sphaerantha(SP) | M. yunnanensis(YU) | + | |
| M. sphaerantha(SP) | M. fulva(FU) | + | |
| M. sphaerantha(SP) | M. crassipes(CR) | + | |
| M. sphaerantha(SP) | M. figo(FI) | + | |
| M. doltsopa(DO) | M. yunnanensis(YU) | + | |
| M. macclurei(MAC) | M. yunnanensis(YU) | + | |
| M. yunnanensis(YU) | M. fulva(FU) | + | |
| M. yunnanensis(YU) | M. crassipes(CR) | + | |
| M. yunnanensis(YU) | M. doltsopa(DO) | + | |
| M. yunnanensis(YU) | M. figo(FI) | + | |
| M. yunnanensis(YU) | M. macclurei(MAC) | + | |
| M. yunnanensis(YU) | M. sphaerantha(SP) | + | |
| M. yunnanensis(YU) | M. foveolata(FO) | + | |
| M. yunnanensis(YU) | M. maudiae(MA) | + | |
| Ma. hookeri(HO)b | M. yunnanensis(YU) | ? | |
| Ma. hookeri(HO)b | M. sphaerantha(SP) | ? | |
| Ma. insignis(IN)b | M. yunnanensis(YU) | ? | |
| Ma. insignis(IN)b | M. yunnanensis(YU) | ? | |
| Ma. insignis(IN)b | M. figo(FI) | ? | |
| Ma. insignis(IN)b | M. sphaerantha(SP) | ? | |
| Mag. grandiflora(GR)c | M. sphaerantha(SP) | ? | |
| Mag. grandiflora(GR)c | M. figo(FI) | ? | |
| Y. delavayi(DE)a | M. yunnanensis(YU) | ? | |
| Y. delavayi(DE)a | M. figo(FI) | ? | |
| Y. delavayi(DE)a | M. sphaerantha(SP) | ? | |
| M. yunnanensis(YU) | M. fulva(FU) | + | |
| M. yunnanensis(YU) | M. crassipes(CR) | + | |
| M. sphaerantha(SP) | M. crassipes(CR) | + | |
| M. sphaerantha(SP) | M. yunnanensis(YU) | + | |
| M. shiluensis(SH) | M. sirindhorniae(SI) | + | |
| M. shiluensis(SH) | M. maudiae var. rubicunda(RU) | ? | |
| M. shiluensis(SH) | M. cavaleriei var. platypetala(PL) | ? | |
| M. shiluensis(SH) | M. crassipes(CR) | ? | |
| M. shiluensis(SH) | M. martini(MAR) | ? | |
| M. chapensis(CHA) | M. crassipes(CR) | + | |
| M. guangdongensis(GU) | M. foveolata(FO) | + | |
| M. cavaleriei var. platypetala(PL) | M. guangdongensis(GU) | + | |
| M. balansae(BA) | Ma. sp.(SP)b | ? | |
| M. crassipes(CR) | Ma. sp.(SP)b | ? | |
| M. foveolata(FO) | Y. soulangeana(SO)a | ? | |
| M. foveolata(FO) | M. odora(OD) | ? | |
| M. foveolata(FO) | M. yunnanensis(YU) | ? | |
| M. yunnanensis(YU) | Ma. sp.(SP)b | ? | |
| M. yunnanensis(YU) | M. balansae(BA) | + | |
| Ma. sp.(SP)b | M. crassipes(CR) | ? | |
| Ma. sp.(SP)b | M. foveolata(FO) | ? | |
| Ma. glauca(GL)b | M. foveolata(FO) | ? | |
| Y. soulangeana(SO)a | M. foveolata(FO) | + | |
| Y. soulangeana(SO)a | M. doltsopa(DO) | + | |
| Y. liliiflora(LI)a | M. foveolata(FO) | + | |
| Y. liliiflora(LI)a | M. crassipes(CR) | ? | |
| M. balansae(BA) | M. foveolata(FO) | + | |
| M. balansae(BA) | M. figo(FI) | + | |
| M. compressa(CO) | M. yunnanensis(YU) | + | |
| M. crassipes(CR) | M. figo(FI) | + | |
| M. yunnanensis(YU) | M. balansae(BA) | + | |
| M. champaca(CH) | M. figo(FI) | + | |
| M. figo(FI) | M. champaca(CH) | + | |
| M. yunnanensis(YU) | M. doltsopa(DO) | + | |
| M. crassipes(CR) | M. foveolata(FO) | + | |
| M. figo(FI) | M. foveolata(FO) | + | |
| M. foveolata(FO) | M. figo(FI) | + | |
| M. foveolata(FO) | M. crassipes(CR) | + | |
| M. chapensis(CHA) | M. compressa(CO) | ? | 本研究 |
| M. compressa(CO) | M. maudiae(MA) | + | 本研究 |
| M. compressa(CO) | M. cavaleriei var. platypetala(PL) | + | 本研究 |
| M. compressa(CO) | M. maudiae var. rubicunda(RU) | + | 本研究 |
| M. compressa(CO) | M. wilsonii(WI) | + | 本研究 |
| M. compressa(CO) | M. cavaleriei(CA) | + | 本研究 |
| M. compressa(CO) | M. crassipes(CR) | + | 本研究 |
| M. compressa(CO) | M. figo(FI) | ? | 本研究 |
| M. compressa(CO) | Y. delavayi(DE)a | ? | 本研究 |
| M. compressa(CO) | Y. zenii(ZI)a | ? | 本研究 |
| M. compressa(CO) | Y. amoena(AM)a | ? | 本研究 |
| M. foveolata(FO) | M. compressa(CO) | + | 本研究 |
| M. wilsonii(WI) | M. compressa(CO) | ? | 本研究 |
| Y. stellata(ST)a | M. compressa(CO) | ? | 本研究 |
| Y. liliiflora(LI)a | M. compressa(CO) | ? | 本研究 |
表1
2023—2025年度台湾含笑花期及气候因子"
| 年份 Year | 始花期 Early flowering stage | 盛花期 Full-bloom stage | 末花期 Late flowering stage | 2月份平均低温/高温 Average high and low temperatures in February/℃ | 2月份降水率 Precipitation days in February (%) | 3月份平均低温/高温 Average high and low temperatures in March/℃ | 3月份降水率 Precipitation days in March (%) |
| 2023 | 02–20 | 02–28 | 03–09 | –4.7/10.2 | 8 | –0.7/28.6 | 6 |
| 2024 | 02–26 | 03–06 | 03–13 | –0.1/14.3 | 14 | 2.6/25.7 | 11 |
| 2025 | 02–18 | 03–02 | 03–15 | –2.2/15.0 | 15 | –1.6/31.7 | 7 |
图4
台湾含笑花粉形态和花粉萌发力及其他父本花粉萌发率 a:成熟花粉囊;b:成熟花粉粒形态;c:花粉萌发;d:花粉萌发率变化;e:其他杂交父本花粉萌发率; ns:不显著;*:P<0.05,**:P<0.01,数据点间的短线表示标准误。a: Mature pollen sac;b: Mature pollen grain morphology;c;Pollen germination;d: Changes in pollen germination rate;e: Pollen germination rate of other hybrid paternal;ns: not significant;*: P<0.05, **: P<0.01, Short lines between the data point refer to standard errors."
表2
人工授粉结果"
| 编号 Code | 母本Female | 父本Male | 授粉朵数 Flowers | 果实数 Fruits | 坐果率 Fruit setting rate (%) | 种子数 Seeds |
| 2301 | 台湾含笑Michelia compressa | 天目玉兰Yulania amoena | 20 | 0 | 0 | 0 |
| 2305 | 台湾含笑M. compressa | 宝华玉兰Y. zenii | 14 | 0 | 0 | 0 |
| 2314 | 台湾含笑M. compressa | 红花深山含笑M. maudiae var. rubicunda | 40 | 28 | 70.00 | 238 |
| 2401 | 台湾含笑M. compressa | 阔瓣含笑M. cavaleriei var. platypetala | 30 | 23 | 76.67 | 164 |
| 2402 | 台湾含笑M. compressa | ‘中山含笑’M ‘Zhongshanhanxiao’ | 30 | 7 | 23.33 | 12 |
| 2403 | 台湾含笑M. compressa | 平伐含笑M. cavaleriei | 30 | 21 | 70.00 | 117 |
| 2404 | 台湾含笑M. compressa | 峨眉含笑M. wilsonii | 58 | 27 | 46.55 | 215 |
| 2405 | 台湾含笑M. compressa | 紫花含笑M. crassipes | 30 | 5 | 16.67 | 6 |
| 2407 | 台湾含笑M. compressa | 含笑花M. figo | 33 | 0 | 0 | 0 |
| 2408 | 台湾含笑M. compressa | 宝华玉兰Y. zenii | 30 | 0 | 0 | 0 |
| 2410 | 台湾含笑M. compressa | 深山含笑M. maudiae | 30 | 10 | 33.33 | 29 |
| 2412 | 台湾含笑M. compressa | 白玉兰Y. denudata | 11 | 0 | 0 | 0 |
| 2413 | 台湾含笑M. compressa | 天目玉兰Y. amoena | 24 | 0 | 0 | 0 |
| 2415 | 台湾含笑M. compressa | 红花深山含笑M. maudiae var. rubicunda | 50 | 17 | 34.00 | 82 |
| 2416 | 紫玉兰Y. liliiflora | 台湾含笑M. compressa | 19 | 0 | 0 | 0 |
| 2417 | 峨眉含笑M. wilsonii | 台湾含笑M. compressa | 22 | 0 | 0 | 0 |
| 2418 | 星花玉兰Y. stellata | 台湾含笑M. compressa | 18 | 0 | 0 | 0 |
| 2419 | 乐昌含笑M. chapensis | 台湾含笑M. compressa | 23 | 0 | 0 | 0 |
| 2420 | 金叶含笑M. foveolata | 台湾含笑M. compressa | 25 | 16 | 64.00 | 82 |
图7
台湾含笑和台湾含笑×红花深山含笑一年生幼苗表型 a:幼苗株型;b:叶片形态;c:苗高;d:地径;e:叶长;f:叶宽。Mc:台湾含笑;Mc×Mr:台湾含笑×红花深山含笑;***:极显著差异(P<0.001),数据点间的短线表示标准误。a: Type of seedling;b: Leaf blade morphology;c: Height;d: Diameter;e: Leaf length;f: Leaf width. Mc: M. compressa;Mc × Mr: M. compressa × M. maudiae var. rubicunda;***: Extremely significant different at P<0.001, Short lines between data points indicate standard error."
图9
含笑种间及属间杂交系谱 实线:杂交成功;虚线:杂交败育。具体杂交组合见表S1。Solid line: Successful hybridization;Dashed line: Hybrid abortion. Specific hybridization combinations are detailed in Table S1. 图中的数据部分来自下面的文献(柴弋霞等,2018;龚洵等,2003a,2003b,2001;刘向东等,2022;李颖婕等,2013;毛常丽等,2009;莫丽文等,2024;邵文豪等,2016;王晶等,2023,2019;王亚玲等,2005,2003;肖玉洁,2024;徐海燕等,2014;张峥等,2023;Han et al.,2014;Lobdell,2021;Parris,2018;Xu et al.,2017)。The data in the figure is sourced from the following literature (as shown in above parentheses). 图中M,Ma,Mag分别代表含笑属,木莲属和木兰属。In the figure, M, Ma, and Mag represent the genera Michelia, Manglietia, and Magnolia, respectively."
| 柴弋霞, 胡希军, 张冬林, 等. 紫花含笑与含笑、深山含笑和阔瓣含笑杂交亲和性分析. 园艺学报, 2018, 45 (10): 1970- 1978. | |
| Chai Y X, Hu X J, Zhang D L, et al. Studies on compatibility of interspecific hybridization between Michelia crassipes and M. figo, M. maudiae, M. platypetala. Acta Horticulturae Sinica, 2018, 45 (10): 1970- 1978. | |
| 陈舜英, 陈芬蕙, 黄裕星, 等. 木兰科乌心石与华盖木种子发芽休眠之研究. 台湾林业科学, 2016, 31 (3): 199- 213. | |
| Chen S Y, Chen F H, Huang Y X, et al. Studies of seed germination and dormancy of the tree species Michelia compressa and Pachylarnax sinica (Magnoliaceae). Taiwan Journal for Science, 2016, 31 (3): 199- 213. | |
| 龚 洵, 潘跃芝, 杨志云, 2001. 木兰科植物的杂交亲和性. 云南植物研究, 23(3): 339–344. | |
| Gong X, Pan Y Z, Yang Z Y, et al. 2001. The cross-compatibility of Magnoliaceae. Acta Botanica Yunnanica, 23(3): 339–344. [in Chinese] | |
| 龚 洵, 张国莉, 潘跃芝, 等. 含笑新品种: 雏菊含笑和春月含笑. 园艺学报, 2003a, 30 (2): 251. | |
| Gong X, Zhang G L, Pan Y Z, et al. Two new hybrid varieties of Michelia. Acta Horticulturae Sinica, 2003a, 30 (2): 251. | |
| 龚 洵, 张国莉, 潘跃芝, 等. 含笑新品种: 郁金含笑、丹芯含笑和沁芳含笑. 园艺学报, 2003b, 30 (1): 123. | |
| Gong X, Zhang G L, Pan Y Z, et al. Three new hybrid varieties of Michelia. Acta Horticulturae Sinica, 2003b, 30 (1): 123. | |
| 李颖婕, 潘跃芝, 龚 洵. 2013. 含笑新品种‘云霞’. 园艺学报, 40(5): 1007–1009. | |
| Li Y J, Pan Y Z, Gong X. 2013. A new hybrid cultivar of Michelia ‘Yunxia’. Acta Horticulturae Sinica, 40(5): 1007–1009. [in Chinese] | |
|
刘向东, 殷云龙. 不同固体培养基配方对台湾含笑花粉萌发的影响及台湾含笑杂交亲和性分析. 植物资源与环境学报, 2022, 31 (2): 49- 56.
doi: 10.3969/j.issn.1674-7895.2022.02.05 |
|
|
Liu X D, Yin Y L. Effects of different solid medium formulas on pollen germination of Michelia compressa and analysis on cross-compatibility of M. compressa. Journal of Plant Resources and Environment, 2022, 31 (2): 49- 56.
doi: 10.3969/j.issn.1674-7895.2022.02.05 |
|
| 毛常丽, 潘跃芝, 龚 洵. 2009. 含笑新品种‘晚春含笑’. 园艺学报, 36(5): 778. | |
| Mao C Y, Pan Y Z, Gong X. 2009. A new hybrid cultivar of Michelia ‘Wanchunhanxiao’. Acta Horticulturae Sinica, 36(5): 778. [in Chinese] | |
|
莫丽文, 赵 莹, 宋希强, 等. 栽培石碌含笑的开花生物学与繁育特性. 热带亚热带植物学报, 2024, 32 (4): 540- 548.
doi: 10.11926/jtsb.4771 |
|
|
Mo L W, Zhao Y, Song X Q, et al. Flowering biological characteristics and reproductive characteristic of cultivated Michelia shiluensis (Magnoliaceae). Journal of Tropical and Subtropical Botany, 2024, 32 (4): 540- 548.
doi: 10.11926/jtsb.4771 |
|
|
亓白岩, 殷云龙, 於朝广, 等. 木兰科含笑属8种植物叶片解剖结构性状与抗寒性的关系. 江苏农业科学, 2013, 41 (4): 150- 153.
doi: 10.3969/j.issn.1002-1302.2013.04.057 |
|
|
Qi B Y, Yin Y L, Yu C G, et al. Relationship between leaf anatomical structural traits and cold resistance in 8 Michelia species (Magnoliaceae). Jiangsu Agricultural Sciences, 2013, 41 (4): 150- 153.
doi: 10.3969/j.issn.1002-1302.2013.04.057 |
|
|
亓白岩, 周冬琴, 於朝广, 等. 8种含笑属植物的抗寒性研究. 江苏农业科学, 2010, (5): 258- 263.
doi: 10.3969/j.issn.1002-1302.2010.05.099 |
|
|
Qi B Y, Zhou D Q, Yu C G, et al. The study on cold resistance of 8 species of Michelia L. Jiangsu Agricultural Sciences, 2010, (5): 258- 263.
doi: 10.3969/j.issn.1002-1302.2010.05.099 |
|
| 邵文豪, 姜景民, 董汝湘, 2016. 含笑新品种‘梦星’. 园艺学报, 43(6): 1219–1220. | |
| Shao W H, Jiang J M, Dong R X. 2016. A new Michelia cultivar ‘Mengxing’. Acta Horticulturae Sinica, 43(6): 1219–1220. [in Chinese] | |
|
王 晶, 王亚玲, 武艳芳, 等. 含笑新品种‘雅馨’的选育. 江苏林业科技, 2023, 50 (5): 32- 34.
doi: 10.3969/j.issn.1001-7380.2023.05.006 |
|
|
Wang J, Wang Y L, Wu Y F, et al. Breeding of a new cultivar Michelia ‘Yaxin’. Journal of Jiangsu Forestry Science & Technology, 2023, 50 (5): 32- 34.
doi: 10.3969/j.issn.1001-7380.2023.05.006 |
|
| 王 晶, 赵强民, 高泽正, 2019. 含笑属Michelia新品种‘香绯’和‘香雪’的选育. 广东园林, 41(6): 53–55. | |
| Wang J, Zhao Q M, Gao Z Z. 2019. Breeding of two new Michelia hybrid varieties. Guangdong Landscape Architecture, 41(6): 53–55. [in Chinese] | |
| 王亚玲, 李 勇, 张寿洲, 等. 木兰科植物的人工杂交. 武汉植物学研究, 2003, 21 (6): 508- 514. | |
| Wang Y L, Li Y, Zhang S Z, et al. The crossing result of Magnoliaceae. Journal of Wuhan Botanical Research, 2003, 21 (6): 508- 514. | |
|
王亚玲, 张寿洲, 李 勇, 等. 木兰科13个分类群和12个杂交组合的染色体数目. 植物分类学报, 2005, 43 (6): 545- 551.
doi: 10.1360/aps030075 |
|
|
Wang Y L, Zhang S Z, Li Y, et al. Chromosome numbers of 13 taxa and 12 crossing combinations in Magnoliaceae. Acta Phytotaxonomica Sinica, 2005, 43 (6): 545- 551.
doi: 10.1360/aps030075 |
|
| 肖玉洁. 2024. 乐昌含笑繁育系统及杂交育种研究. 长沙: 中南林业科技大学. | |
| Xiao Y J. 2024. Study on breeding system and hybrid breeding of Michelia chapensis. Changsha: Central South University of Forestry and Technology. [in Chinese] | |
|
徐海燕, 李文祥, 潘跃芝, 等. 含笑新品种‘云瑞’. 园艺学报, 2014, 41 (2): 403- 404.
doi: 10.3969/j.issn.0513-353X.2014.02.029 |
|
|
Xu H Y, Li W X, Pan Y Z, et al. A new Michelia cultivar ‘Yunrui’. Acta Horticulturae Sinica, 2014, 41 (2): 403- 404.
doi: 10.3969/j.issn.0513-353X.2014.02.029 |
|
| 张 哲, 金晓玲, 胡莹冰, 等. 2022. 紫花含笑的开花动态、传粉特征及柱头可授性. 分子植物育种, https://kns.cnki.net/kcms/detail/46.1068.S.20221117.1106.006.html. | |
| Zhang Z, Jin X L, Hu Y B, et al. 2022. Flowering dynamics, pollination characteristics and stigma receptivity in Michelia crassipes. Molecular Plant Breeding, https://kns.cnki.net/kcms/detail/46.1068.S.20221117.1106.006.html. [in Chinese]) | |
|
张 峥, 邵凤侠, 金晓玲, 等. 金叶含笑与2种含笑的杂交亲和性. 浙江农林大学学报, 2023, 40 (5): 961- 969.
doi: 10.11833/j.issn.2095-0756.20230021 |
|
|
Zhang Z, Shao F X, Jin X L, et al. Compatibility between Michelia foveolata and two Michelia species. Journal of Zhejiang A& F University, 2023, 40 (5): 961- 969.
doi: 10.11833/j.issn.2095-0756.20230021 |
|
|
Barbosa J C J, Caruzo M B R, Simões A R G, et al. Taxonomic revision of the native Magnolia (Magnoliaceae) species of Brazil. PhytoKeys, 2024, 238, 33- 64.
doi: 10.3897/phytokeys.238.113277 |
|
|
Chen T T, Wang Z Q, Wang J J, et al. Transcriptomic and metabolomic analyses unveil the growth advantage mechanism conferred by heterosis of Michelia ‘Zhongshanhanxiao’. Tree Physiology, 2023, 43 (8): 1454- 1466.
doi: 10.1093/treephys/tpad046 |
|
| Chen Y, Chen G, Yang J, et al. 2016. Reproductive biology of Magnolia sinica (Magnoliaecea), a threatened species with extremely small populations in Yunnan, China. Plant Diversity 38(5): 253–258. | |
|
Cui L M, Liu X D, Liu J Q, et al. Genetic relationships of Michelia compressa (Magnoliaceae) with Michelia species and its improvement by interspecific hybridization. Trees-Structure and Function, 2024, 38 (5): 1079- 1094.
doi: 10.1007/s00468-024-02537-2 |
|
|
Cui L M, Liu Z M, Yin Y L, et al. Research progress of chromosome doubling and 2n gametes of ornamental plants. Horticulturae, 2023, 9 (7): 752.
doi: 10.3390/horticulturae9070752 |
|
|
Cui L M, Sun Y N, Xiao K Z, et al. Analysis on the abnormal chromosomal behaviour and the partial female fertility of allotriploid Lilium–‘Triumphator’ (LLO) is not exceptional to the hypothesis of lily interploid hybridizations. Scientia Horticulturae, 2022, 293, 110746.
doi: 10.1016/j.scienta.2021.110746 |
|
|
Dong S S, Wang Y L, Xia N H, et al. Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s. l. (Magnoliaceae). Journal of Systematics and Evolution, 2022, 60 (1): 1- 15.
doi: 10.1111/jse.12727 |
|
|
Dridi J, Fendri M, Breton C M, et al. Characterization of olive progenies derived from a Tunisian breeding program by morphological traits and SSR markers. Scientia Horticulturae, 2018, 236, 127- 136.
doi: 10.1016/j.scienta.2018.03.042 |
|
| Gottsberger G, Silberbauer-Gottsberger I, Seymour R S, et al. 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora-Morphology, Distribution, Functional Ecology of Plants, 207(2): 107–118. | |
|
Han C Y, Luo G F, Ji L, et al. ‘Chilongzhua’ and ‘Yanzhizui’: two interspecific hybrid cultivars of Michelia. HortScience, 2014, 49 (1): 96- 97.
doi: 10.21273/HORTSCI.49.1.96 |
|
|
He J Y, Reddy G V P, Liu M D, et al. A general formula for calculating surface area of the similarly shaped leaves: Evidence from six Magnoliaceae species. Global Ecology and Conservation, 2020, 23, e01129.
doi: 10.1016/j.gecco.2020.e01129 |
|
|
Huang J B, Yang L, Yang L, et al. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature, 2023, 614 (7947): 303- 308.
doi: 10.1038/s41586-022-05640-x |
|
|
Li C H, Guan H H, Jing X, et al. Genomic insights into historical improvement of heterotic groups during modern hybrid maize breeding. Nature Plants, 2022, 8 (7): 750- 763.
doi: 10.1038/s41477-022-01190-2 |
|
|
Li Y M, Ye T W, Han C X, et al. Cytogenetic analysis of interspecific hybridization in oil-tea (Camellia oleifera). Euphytica, 2021, 217 (2): 28.
doi: 10.1007/s10681-020-02762-z |
|
| Lin T P. Allozyme variations in Michelia formosana (Kanehira) Masamune (Magnoliaceae), and the inference of a glacial refugium in Taiwan. Theoretical and Applied Genetics, 2001, 102 (2): 450- 457. | |
| Liu S Y, Sun Y N, Peng M Z, et al. F1 distant hybrids between two edible lilies (Lilium brownii var. viridulum and L. davidii var. unicolor) produce more n than 2n functional eggs with more recombinant chromosomes. Euphytica, 2023, 220 (1): 4. | |
|
Liu Y M, Zhang L, Sun Y N, et al. The common occurrence of 2n eggs by lily F1 distant hybrids and its significance on lily breeding: a case of analyzing OT hybrids. Euphytica, 2021, 217 (11): 204.
doi: 10.1007/s10681-021-02935-4 |
|
|
Lobdell M S. Register of Magnolia cultivars. HortScience, 2021, 56 (12): 1614- 1675.
doi: 10.21273/HORTSCI16054-21 |
|
|
Ma W C, Li Y M, Gao H R, et al. Functional dissection of three pollen-side quantitative trait loci against multiple stylar unilateral incompatibility mechanisms in Solanum pennellii LA0716. New Phytologist, 2025, 246 (1): 298- 316.
doi: 10.1111/nph.20456 |
|
|
Ma X, Jia Q X, Li S, et al. An enhanced network of energy metabolism, lysine acetylation, and growth-promoting protein accumulation is associated with heterosis in elite hybrid rice. Plant Communications, 2023, 4 (4): 100560.
doi: 10.1016/j.xplc.2023.100560 |
|
|
Madesis P, Abraham E M, Kalivas A, et al. Genetic diversity and structure of natural Dactylis glomerata L. populations revealed by morphological and microsatellite-based (SSR/ISSR) markers. Genetics and Molecular Research, 2014, 13 (2): 4226- 4240.
doi: 10.4238/2014.June.9.8 |
|
| Parris J K. 2018. Magnolia: impact of interspecific hybridization on genetic variation and ongoing breeding initiatives. The United States of America: Clemson University. | |
|
Sun C Q, Chen F D, Teng N J, et al. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat.) Kitamura and its wild species. Euphytica, 2010, 171 (2): 181- 192.
doi: 10.1007/s10681-009-0005-6 |
|
|
Wang B B, Hou M, Shi J P, et al. De novo genome assembly and analyses of 12 founder inbred lines provide insights into maize heterosis. Nature Genetics, 2023, 55 (2): 312- 323.
doi: 10.1038/s41588-022-01283-w |
|
| Wang R H, Jia H, Wang J Z, et al. 2010. Flowering and pollination patterns of Magnolia denudata with emphasis on anatomical changes in ovule and seed development. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(4): 259–265. | |
| Wang R H, Xu S, Liu X Y, et al. 2014. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS One. 9(6): e99356. | |
|
Wang Y B, Li W Q, Wang L X, et al. Three types of genes underlying the Gametophyte factor1 locus cause unilateral cross incompatibility in maize. Nature Communications, 2022, 13 (1): 4498.
doi: 10.1038/s41467-022-32180-9 |
|
|
Wei X, Zhou Y W, Abbas F, et al. Distant heteroploid hybridization improved Hedychium floral scent, floral color and morphologcal traits. Industrial Crops and Products, 2023, 194, 116357.
doi: 10.1016/j.indcrop.2023.116357 |
|
|
Wu L K, Wan L, Cui L M, et al. Analysis of the cross-compatibility of Lilium brownii var. viridulum and L. davidii var. unicolor. Scientia Horticulturae, 2021, 284, 110130.
doi: 10.1016/j.scienta.2021.110130 |
|
|
Wu Q, Jin L, Nie T, et al. The flowering dynamics and breeding system in Magnolia × soulangeana ‘Hongyun’. Scientia Horticulturae, 2024, 324, 112639.
doi: 10.1016/j.scienta.2023.112639 |
|
|
Xu H Y, Li F L, Pan Y Z, et al. Interspecific hybridization processes between Michelia yunnanensis and M. crassipes and embryogenesis of the heterozygote. HortScience, 2017, 52 (8): 1043- 1047.
doi: 10.21273/HORTSCI12086-17 |
|
|
Yao W H, Fan Y, Wang Z H, et al. Diversity and geographic distribution patterns of wild Magnoliaceae species in China. Sustainability, 2024, 16 (21): 9448.
doi: 10.3390/su16219448 |
|
|
Yin Y L, Wang Z Q, Sun M Y, et al. Magnolia compressa Zhongshanhanxiao: a new Magnolia L. cultivar (Magnoliaceae). HortScience, 2023, 58 (10): 1161- 1162.
doi: 10.21273/HORTSCI17229-23 |
|
|
Zhang H H, Wu H Y, Zhou Q, et al. Flowering characteristics and reproductive biology of Nymphaea hybrid, a precious water lily. Scientia Horticulturae, 2021, 287, 110268.
doi: 10.1016/j.scienta.2021.110268 |
|
| Zhang N N, Yu J J, Wang Y H, et al. Molecular evidence for asymmetric hybridization in three closely related sympatric species. AoB Plants, 2018, 10 (1): ply011. | |
|
Zhang S Z, Wang Y L, He Z C, et al. Genome differentiation in Magonoliaceae as revealed from meiotic pairing in interspecific and intergeneric hybrids. Journal of Systematics and Evolution, 2011, 49 (6): 518- 527.
doi: 10.1111/j.1759-6831.2011.00164.x |
|
|
Zhang Y, Zhou S J, Chen Y, et al. New insights into interspecies relationships, chromosomal evolution, and hybrid identification in the Lycoris Herb. BMC Plant Biology, 2025, 25 (1): 78.
doi: 10.1186/s12870-025-06112-w |
| [1] | 钟远标, 岳晋军, 楼崇, 袁金玲, 顾小平. 麻竹的花器官与繁育系统[J]. 林业科学, 2017, 53(1): 1-10. |
| [2] | 朱建华;韩玉洁;竺唯杰. 落羽杉属新品种东方杉[J]. 林业科学, 2010, 46(6): 182-182. |
| [3] | 於朝广 殷云龙 徐建华. 用SRAP标记鉴定落羽杉属植物杂种[J]. 林业科学, 2009, 12(2): 142-146. |
| [4] | 姜静 杨传平 刘桂丰 刘玉喜 任旭琴. 利用RAPD标记技术对桦树种间亲缘关系的分析[J]. 林业科学, 2002, 38(1): 154-156. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||