林业科学 ›› 2025, Vol. 61 ›› Issue (6): 147-158.doi: 10.11707/j.1001-7488.LYKX20240086
张君瑶1,2,李晨亮1,2,刘慧1,段春明1,曾海聪1,王嘉楠1,2,*()
收稿日期:
2024-02-15
出版日期:
2025-06-10
发布日期:
2025-06-26
通讯作者:
王嘉楠
E-mail:wjn@ahau.edu.cn
基金资助:
Junyao Zhang1,2,Chenliang Li1,2,Hui Liu1,Chunming Duan1,Haicong Zeng1,Jianan Wang1,2,*()
Received:
2024-02-15
Online:
2025-06-10
Published:
2025-06-26
Contact:
Jianan Wang
E-mail:wjn@ahau.edu.cn
摘要:
目的: 探究城市绿色廊道中传粉昆虫(蜂类、蝶类和食蚜蝇类)类群与环境影响因素之间的关系,为城市传粉昆虫群落保护及城市绿色廊道建设和优化提供科学依据。方法: 以安徽省合肥市建成区内5种典型绿色廊道为研究对象,对收集到的廊道环境因子数据与传粉昆虫多样性指标进行相关分析和回归分析,并构建拟合模型探究传粉昆虫与环境因子之间的关系。结果: 1) 6个月的调查中,15个样地共记录到传粉昆虫
中图分类号:
张君瑶,李晨亮,刘慧,段春明,曾海聪,王嘉楠. 合肥市城市绿色廊道中传粉昆虫多样性及其影响因素[J]. 林业科学, 2025, 61(6): 147-158.
Junyao Zhang,Chenliang Li,Hui Liu,Chunming Duan,Haicong Zeng,Jianan Wang. Diversity Characteristics and Influencing Factors of Pollinating Insects in Urban Green Corridors in Hefei City[J]. Scientia Silvae Sinicae, 2025, 61(6): 147-158.
表1
绿色廊道样地蜜源植物丰富度与开花多度①"
样地 Sample plot | 蜜源植物 丰富度 Nectar plant richness | 蜜源植物开花多度 Flowering polytope of nectar plants | 主要蜜源植物 Main nectar source plant | ||||||
5月 May | 6月 June | 7月 July | 8月 August | 9月 September | 10月 October | 总计 Total | |||
RLC1 | 22 | 113 | 98 | 89 | 94 | 154 | 140 | 688 | 鬼针草(Bidens pilosa )-乌蔹莓(Causonis japonica)-一枝黄花(Solidago decurren) |
RLC2 | 16 | 76 | 108 | 98 | 84 | 92 | 85 | 543 | 鬼针草(Bidens pilosa)-乌蔹莓 (Causonis japonica)-芸薹(Brassica rapa var. oleifera) |
RLC3 | 12 | 69 | 78 | 59 | 63 | 50 | 54 | 373 | 蒲公英(Taraxacum mongolicum)-老鹳草(Geranium wilfordii)- 茅莓(Rubus parvifolius ) |
PLC1 | 15 | 109 | 125 | 97 | 103 | 87 | 84 | 605 | 乌桕(Triadica sebifera)-白车轴草(Trifolium repens)-红花酢浆草(Oxalis corymbosa) |
PLC2 | 21 | 78 | 95 | 106 | 89 | 79 | 85 | 532 | 白车轴草(Trifolium repens)-苜蓿(Medicago sativa )-鼠尾草(Salvia japonica) |
PLC3 | 14 | 69 | 75 | 58 | 46 | 42 | 39 | 329 | 白车轴草(Trifolium repens)-紫薇(Lagerstroemia indica )- 红叶石楠(Photinia × fraseri ) |
R1 | 12 | 78 | 64 | 58 | 54 | 44 | 38 | 336 | 海桐(Pittosporum tobira)-南天竹(Nandina domestica) |
R2 | 6 | 35 | 33 | 29 | 15 | 21 | 14 | 147 | 绣线菊(Spiraea salicifolia )-白车轴草(Trifolium repens) |
R3 | 9 | 64 | 57 | 43 | 51 | 39 | 28 | 282 | 红叶石楠(Photinia × fraseri )-绣球(Hydrangea macrophylla)- 白车轴草(Trifolium repens) |
RC1 | 18 | 145 | 108 | 95 | 87 | 96 | 79 | 610 | 白车轴草(Trifolium repens )-红花酢浆草(Oxalis corymbosa.) |
RC2 | 16 | 89 | 125 | 98 | 86 | 93 | 75 | 566 | 白车轴草(Trifolium repens )-益母草(Leonurus japonicus) |
RC3 | 16 | 99 | 103 | 85 | 73 | 69 | 52 | 481 | 火棘(Pyracantha fortuneana)-白车轴草(Trifolium repens) |
RIC1 | 19 | 104 | 108 | 96 | 87 | 94 | 79 | 568 | 绣线菊(Spiraea salicifolia)-南天竹(Nandina domestica)-苜蓿(Medicago sativa) |
RIC2 | 21 | 109 | 113 | 88 | 91 | 68 | 58 | 527 | 白车轴草(Trifolium repens)-苜蓿(Medicago sativa)-红花酢浆草(Oxalis corymbosa) |
RIC3 | 15 | 92 | 94 | 88 | 77 | 89 | 74 | 514 | 桂花(Osmanthus fragrans)-红叶石楠(Photinia × fraseri)-红花酢浆草(Oxalis corymbosa) |
图5
不同廊道传粉昆虫群落与环境因子相关性热图 a. 绿色高压廊道Green high voltage corridor;b.绿色道路廊道Green road corridors;c.绿色河流廊道Green river corridor;d.绿色带状廊道Green ribbon corridor;e.绿色铁路廊道Green railway corridors;f.所有绿色廊道All green corridors. PR:植物丰富度Plant richness;NPR:蜜源植物丰富度Nectar plant richness;FPNP:蜜源植物开花多度Flowering polytope of nectar plants;TR:乔木丰富度Tree richness;SR:灌木丰富度Shrub richness;HR:草本植物丰富度Herb richness;TDBH:乔木胸径Tree diameter at breast height;TH:乔木高度Tree height;SH:灌木高度Shrub height;HH:草本高度Herb height;SC:灌木盖度Shrub cover;HC:草本盖度Herb cover;ST:土壤温度Soil temperature;SM:土壤湿度Soil moisture;SPH:土壤pH值Soil pH;LI:光照强度Light intensity;SL:坡度Slope;ALT:海拔Altitude;BGC:裸地盖度Bare ground cover;CCD:林冠郁闭度Canopy cover density;DHI:人为干扰程度Degree of human interference;PA:传粉昆虫丰富度Pollinator abundance;PD:传粉昆虫多样性Pollinator diversity;PM:传粉昆虫多度Pollinators multitude;PU:传粉昆虫均匀度Pollinator uniformity."
表2
传粉昆虫群落指标与环境因子拟合模型"
传粉昆虫群落Pollinator community | 调整后 R2 Adjusted R2 | P | 回归方程 Regression equation |
传粉昆虫丰富度Pollinator abundance | 0.916 | <0.001 | Y=2.400×DHI?19.418×CCD+0.977×FPNP +30.774 |
传粉昆虫多样性Pollinator diversity | 0.792 | <0.001 | Y=0.081×NPR?0.592×CCD?0.001×FPNP +2.347 |
传粉昆虫多度Pollinators multitude | 0.907 | <0.001 | Y=0.957×FPNP?351.653×CCD?706.329×BGC +19.917×SL- |
传粉昆虫均匀度Pollinator uniformity | 0.572 | <0.001 | Y=0.053×NPR+1.755 |
代江瑞, 王斐然, 史秀丽, 等. 果树授粉研究进展. 中国蜂业, 2023, 74 (3): 58- 61.
doi: 10.3969/j.issn.0412-4367.2023.03.026 |
|
Dai J R, Wang F R, Shi X L, et al. Research progress on pollination of fruit tree. Apiculture of China, 2023, 74 (3): 58- 61.
doi: 10.3969/j.issn.0412-4367.2023.03.026 |
|
付 飞, 董 靓. 基于生态廊道原理的城市河流景观空间分析. 中国园林, 2012, 28 (9): 57- 61.
doi: 10.3969/j.issn.1000-6664.2012.09.012 |
|
Fu F, Dong L. Analysis of urban river landscape space based on ecological corridor principles. Chinese Garden, 2012, 28 (9): 57- 61.
doi: 10.3969/j.issn.1000-6664.2012.09.012 |
|
韩 丹, 王 成, 殷鲁秦. 北京城市蝴蝶蜜源植物网络特征及重要蜜源植物识别. 生态学报, 2021, 41 (22): 8892- 8905. | |
Han D, Wang C, Yin L Q. Characteristics of butterfly-nectar plant network in Beijing’s urban parks and identifying important nectariferous plant species. Acta Ecologica Sinica, 2021, 41 (22): 8892- 8905. | |
何俊华, 陈学新, 樊晋江. 2004. 浙江蜂类志. 北京: 科学出版社. | |
He J H, Chen X X, Fan J J. 2004. Hymenopteran insect fauna of zhejiang. Beijing: Science Press. [in Chinese] | |
李家勤. 秋末冬初优质蜜粉源植物——鬼针草. 蜜蜂杂志, 2008, 28 (7): 37.
doi: 10.3969/j.issn.1003-9139.2008.07.035 |
|
Li J Q. High-quality honey pollen source plants in late fall and early winter-ghost needlewort. Journal of Bee, 2008, 28 (7): 37.
doi: 10.3969/j.issn.1003-9139.2008.07.035 |
|
李晓鹏, 冯 黎, 黄 瑞, 等. 成都城区河流廊道自生植物的物种组成及其响应不同生境的多度格局. 中国园林, 2023, 39 (8): 108- 114. | |
Li X P, Feng L, Huang R, et al. Species composition and abundance pattern of spontaneous plants responding to various habitatsalong urban river corridors in Chengdu. Chinese Garden, 2023, 39 (8): 108- 114. | |
孟绪武. 2003. 安徽省昆虫名录. 合肥: 中国科学技术大学出版社. | |
Meng X W. 2003. Name-list of insects from Anhui Province of China. Hefei: University of Science and Technology of China Press. [in Chinese] | |
潘 妮, 闵钰婷, 赵娟娟, 等. 城市建成区自生草本植物群落的物种多样性与功能多样性: 以深圳市为例. 生态学报, 2024, 44 (9): 3759- 3774. | |
Pan N, Min Y T, Zhao J J, et al. Species and functional diversity of spontaneous herb communities in urban built-up areas: a case study of Shenzhen City. Acta Ecologica Sinica, 2024, 44 (9): 3759- 3774. | |
孙 帅. 2013. 都市型绿道规划设计研究. 北京: 北京林业大学. | |
Sun S. 2013. Research on urban greenway planning and design. Beijing: Beijing Forestry University. [in Chinese] | |
田 甜, 李军乔, 吕博文. 青海湟源蕨麻访花昆虫多样性及访花行为分析. 甘肃农业大学学报, 2023, 58 (2): 58- 67. | |
Tian T, Li J Q, Lü B W. Diversity and visiting behaviors of floral visitor insects of Potentilla anserina in Huangyuan county, Qinghai Province. Journal of Gansu Agricultural University, 2023, 58 (2): 58- 67. | |
虞国跃. 2019. 北京访花昆虫图谱. 北京: 电子工业出版社. | |
Yu G Y. 2019. Photographic atlas of Beijing flower-visiting insects. Beijing: Publishing House of Electronics Industry. [in Chinese] | |
曾海聪. 2023. 城市绿地蝴蝶物种和功能多样性差异及其影响因素研究. 合肥: 安徽农业大学. | |
Zeng H C. 2023. Study on species and functional diversity differences of butterflies in urban green space and their influencing factors. Hefei: Anhui Agricultural University. [in Chinese] | |
曾晓琳. 生态廊道的设计理念及其功能实现. 现代园艺, 2021, 44 (13): 102- 104.
doi: 10.3969/j.issn.1006-4958.2021.13.045 |
|
Zeng X L. Design concept of ecological corridor and its function realisation. Contemporary Horticulture, 2021, 44 (13): 102- 104.
doi: 10.3969/j.issn.1006-4958.2021.13.045 |
|
张 楠, 董 丽, 王 靛, 等. 北京城市生态廊道草本植物组成及分布格局. 中国园林, 2018, 34 (6): 94- 99.
doi: 10.3969/j.issn.1000-6664.2018.06.017 |
|
Zhang N, Dong L, Wang D, et al. Survey and analysis of the composition and distribution pattern of herbaceous plants in Beijing urban ecological corridors. Chinese Garden, 2018, 34 (6): 94- 99.
doi: 10.3969/j.issn.1000-6664.2018.06.017 |
|
周 尧. 1999. 中国蝶类志. 2版. 郑州: 河南科学技术出版社. | |
Zhou Y. 1999. Monograph of Chinese butterflies. 2nd ed. Zhengzhou: Henan Science and Technology Press. [in Chinese] | |
诸立新, 刘子豪, 虞 磊, 等. 2017. 安徽蝴蝶志. 合肥: 中国科学技术大学出版社. | |
Zhu L X, Liu Z H, Yu L, et al. 2017. Butterfly fauna of Anhui. Hefei: University of Science and Technology of China Press. [in Chinese] | |
Arnold S E J, Peralta Idrovo M E, Lomas Arias L J, et al. Herbivore defence compounds occur in pollen and reduce bumblebee colony fitness. Journal of Chemical Ecology, 2014, 40 (8): 878- 881.
doi: 10.1007/s10886-014-0467-4 |
|
Aziz H A, Rasidi M H. The role of green corridors for wildlife conservation in urban landscape: a literature review. IOP Conference Series: Earth and Environmental Science, 2014, 18 (1): 012093.
doi: 10.1088/1755-1315/18/1/012093 |
|
Birdshire K R, Carper A L, Briles C E. Bee community response to local and landscape factors along an urban-rural gradient. Urban Ecosystems, 2020, 23 (4): 689- 702.
doi: 10.1007/s11252-020-00956-w |
|
Blouin D, Pellerin S, Poulin M. Increase in non-native species richness leads to biotic homogenization in vacant lots of a highly urbanized landscape. Urban Ecosystems, 2019, 22 (5): 879- 892.
doi: 10.1007/s11252-019-00863-9 |
|
Braaker S, Ghazoul J, Obrist M K, et al. Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology, 2014, 95 (4): 1010- 1021.
doi: 10.1890/13-0705.1 |
|
Butler D R. Geomorphic process-disturbance corridors: a variation on a principle of landscape ecology. Progress in Physical Geography, 2001, 25 (2): 237- 238. | |
Carboni M, Livingstone S W, Isaac M E, et al. Invasion drives plant diversity loss through competition and ecosystem modification. Journal of Ecology, 2021, 109 (10): 3587- 3601.
doi: 10.1111/1365-2745.13739 |
|
Daniels B, Jedamski J, Ottermanns R, et al. A “plan bee” for cities: pollinator diversity and plant-pollinator interactions in urban green spaces. PLoS One, 2020, 15 (7): e0235492.
doi: 10.1371/journal.pone.0235492 |
|
Ding Z, Cao J, Wang Y. The construction and optimization of habitat networks for urban-natural symbiosis: a case study of the main urban area of Nanjing. Forests, 2023, 14 (133): 1- 18. | |
Dylewski Ł, Maćkowiak Ł, Banaszak-Cibicka W. Are all urban green spaces a favourable habitat for pollinator communities? Bees, butterflies and hoverflies in different urban green areas. Ecological Entomology, 2019, 44 (5): 678- 689.
doi: 10.1111/een.12744 |
|
Dylewski Ł, Maćkowiak Ł, Banaszak-Cibicka W. Linking pollinators and city flora: how vegetation composition and environmental features shapes pollinators composition in urban environment. Urban Forestry & Urban Greening, 2020, 56, 126795. | |
Encinas-Viso F, Revilla T A, Etienne R S. Shifts in pollinator population structure may jeopardize pollination service. Journal of Theoretical Biology, 2014, 352, 24- 30.
doi: 10.1016/j.jtbi.2014.02.030 |
|
Furukawa Y, Tsukaya H, Kawakubo N. Oscillating flower colour changes of Causonis japonica (Thunb. ) Raf. (Vitaceae) linked to sexual phase changes. Scientific Reports, 2022, 12 (1): 19682.
doi: 10.1038/s41598-022-24252-z |
|
Hanley M, Wilkins J. On the verge? Preferential use of road-facing hedgerow margins by bumblebees in agro-ecosystems. Journal of Insect Conservation, 2015, 19 (1): 67- 74.
doi: 10.1007/s10841-014-9744-3 |
|
Hemberger J, Gratton C. Floral resource discontinuity contributes to spatial mismatch between pollinator supply and pollination demand in a pollinator-dependent agricultural landscapes. Landscape Ecology, 2023, 38 (12): 4439- 4450.
doi: 10.1007/s10980-023-01707-w |
|
Heneberg P, Bogusch P, Řezáč M. Roadside verges can support spontaneous establishment of steppe-like habitats hosting diverse assemblages of bees and wasps (Hymenoptera: Aculeata) in an intensively cultivated central European landscape. Biodiversity and Conservation, 2017, 26 (4): 843- 864.
doi: 10.1007/s10531-016-1275-7 |
|
Higginson P, Dover J. Bumblebee abundance and richness along disused railway lines: the impact of track morphology. Journal of Insect Conservation, 2021, 25, 841- 857.
doi: 10.1007/s10841-021-00345-4 |
|
Hu X, Arif M, Ding D D, et al. Invasive plants and species richness impact litter decomposition in riparian zones. Frontiers in Plant Science, 2022, 13, 955656.
doi: 10.3389/fpls.2022.955656 |
|
Jachuła J, Denisow B, Wrzesień M. Habitat heterogeneity helps to mitigate pollinator nectar sugar deficit and discontinuity in an agricultural landscape. The Science of the Total Environment, 2021, 782, 146909.
doi: 10.1016/j.scitotenv.2021.146909 |
|
Jasmani Z, Mohamad S, Hamid A R, et al. Planning and design considerations for birds and butterflies diversity of small urban parks: a case of petaling jaya, malaysia. International Journal on Sustainable Tropical Design Research & Practice, 2020, 13 (2): 69- 81. | |
Kato M, Kawakita A, Goto R, et al. Community-level plant–pollinator interactions in a Palaeotropical montane evergreen oak forest ecosystem. Journal of Natural History, 2020, 54 (33-34): 2125- 2176.
doi: 10.1080/00222933.2020.1837977 |
|
Knapp M, Saska P, Knappová J, et al. The habitat-specific effects of highway proximity on ground-dwelling arthropods: implications for biodiversity conservation. Biological Conservation, 2013, 164, 22- 29.
doi: 10.1016/j.biocon.2013.04.012 |
|
Kondratyeva A, Knapp S, Durka W, et al. 2020. Urbanization effects on biodiversity revealed by a two-scale analysis of species functional uniqueness vs. redundancy. Frontiers in Ecology and Evolution,8:73. | |
Kremen C, Williams N M, Aizen M A, et al. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change. Ecology Letters, 2007, 10 (4): 299- 314.
doi: 10.1111/j.1461-0248.2007.01018.x |
|
Leston L F V, Rodewald A D. Are urban forests ecological traps for understory birds? An examination using Northern cardinals. Biological Conservation, 2006, 131 (4): 566- 574.
doi: 10.1016/j.biocon.2006.03.003 |
|
Li G D, Fang C L, Li Y J, et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nature Communications, 2022, 13 (1): 1628.
doi: 10.1038/s41467-022-29324-2 |
|
Lokatis S, Jeschke J M. Urban biotic homogenization: approaches and knowledge gaps. Ecological Applications, 2022, 32 (8): e2703.
doi: 10.1002/eap.2703 |
|
Masierowska M, Stawiarz E, Rozwałka R. Perennial ground cover plants as floral resources for urban pollinators: a case of Geranium species. Urban Forestry & Urban Greening, 2018, 32, 185- 194. | |
Moroń D, Skórka P, Lenda M, et al. Railway embankments as new habitat for pollinators in an agricultural landscape. PLoS ONE, 2014, 9 (7): e101297.
doi: 10.1371/journal.pone.0101297 |
|
Olsson R L, Brousil M R, Clark R E, et al. Interactions between plants and pollinators across urban and rural farming landscapes. Food Webs, 2021, 27, e00194.
doi: 10.1016/j.fooweb.2021.e00194 |
|
Olufemi O F, Ambrose A, Pauline A. The paradox of livelihood strategies and urban landscape degradation in contested spaces: towards attaining a sustainable green city in Ado-Ekiti, Nigeria. International Journal of Development Research, 2018, 8 (11): 24031- 24040. | |
Pielou E C. Shannon's formula as a measure of specific diversity: its use and misuse. The American Naturalist, 1966, 100 (914): 463- 465.
doi: 10.1086/282439 |
|
Potts S G, Biesmeijer J C, Kremen C, et al. Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 2010, 25 (6): 345- 353. | |
Rivest S A, Wolkovich E M, Kharouba H M. Flowering phenology influences butterfly nectar foraging on non-native plants in an oak savanna. Ecology, 2023, 104 (4): e4004.
doi: 10.1002/ecy.4004 |
|
Rocha E A, Souza E N F, Bleakley L A D, et al. Influence of urbanisation and garden plants on the diversity and abundance of aphids and their ladybird and hoverfly predators. European Journal of Entomology, 2018, 115, 140- 149.
doi: 10.14411/eje.2018.013 |
|
Rüdisser J, Tasser E, Tappeiner U. Distance to nature: a new biodiversity relevant environmental indicator set at the landscape level. Ecological Indicators, 2012, 15 (1): 208- 216.
doi: 10.1016/j.ecolind.2011.09.027 |
|
Soga M, Koike S. Mapping the potential extinction debt of butterflies in a modern city: implications for conservation priorities in urban landscapes. Animal Conservation, 2013, 16 (1): 1- 11.
doi: 10.1111/j.1469-1795.2012.00572.x |
|
Swamy S, Nagendra H, Devy S. Building biodiversity in neighbourhood parks in Bangalore city, India: Ordinary yet essential. PLoS ONE, 2019, 14 (5): e0215525.
doi: 10.1371/journal.pone.0215525 |
|
Tew N E, Memmott J, Vaughan I P, et al. Quantifying nectar production by flowering plants in urban and rural landscapes. Journal of Ecology, 2021, 109 (4): 1747- 1757.
doi: 10.1111/1365-2745.13598 |
|
Villemey A, Jeusset A, Vargac M, et al. Can linear transportation infrastructure verges constitute a habitat and/or a corridor for insects in temperate landscapes? A systematic review. Environmental Evidence, 2018, 7 (5): 1- 33. | |
Ward S F, Taylor B S, Dixon Hamil K A, et al. Effects of terrestrial transport corridors and associated landscape context on invasion by forest plants. Biological Invasions, 2020, 22 (10): 3051- 3066.
doi: 10.1007/s10530-020-02308-3 |
|
Yan H. Butterfly diversity along a gradient of urbanization: Chongqing as a case study. Biodiversity Science, 2006, 14 (3): 216.
doi: 10.1360/biodiv.060034 |
|
Zariman N A, Omar N A, Huda A N. Plant attractants and rewards for pollinators: their significant to successful crop pollination. International Journal of Life Sciences and Biotechnology, 2022, 5 (2): 270- 293.
doi: 10.38001/ijlsb.1069254 |
|
Zeng H, Wang J, Guan M, et al. Effects of vegetation structure and environmental characteristics on pollinator diversity in urban green spaces. Urban Forestry & Urban Greening, 2023, 84, 127928. | |
Zhang X, Zhang L, Wang Y, et al. Pollinators and urban riparian vegetation: important contributors to urban diversity conservation. Environmental Sciences Europe, 2022, 34 (1): 78. |
[1] | 刘鲁霞,胡波,桑国庆,刘玉玉. 激光雷达森林结构指标在森林植物多样性评估中的研究进展[J]. 林业科学, 2025, 61(1): 176-196. |
[2] | 冯琦雅, 陈超凡, 覃林, 何亚婷, 王鹏, 段艺璇, 王雅菲, 何友均. 不同经营模式对蒙古栎天然次生林林分结构和植物多样性的影响[J]. 林业科学, 2018, 54(1): 12-21. |
[3] | 张俊艳, 成克武, 臧润国, 丁易. 海南岛热带针-阔叶林交错区群落环境特征[J]. 林业科学, 2014, 50(8): 1-6. |
[4] | 郭彦林;孟庆繁;高文韬. 长白山高山草甸植物-传粉昆虫相互作用网络可视化及格局分析[J]. 林业科学, 2012, 48(12): 141-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||