|
董利虎. 2015. 东北林区主要树种及林分类型生物量模型研究. 哈尔滨: 东北林业大学.
|
|
Dong L H. 2015. Study on the compatible models of tree biomass for main species in Heilongjiang Province. Harbin: Northeast Forestry University. [in Chinese]
|
|
国家林业局. 2016. 全国森林经营规划(2016—2050). 北京: 国家林业局.
|
|
State Forestry Bureau. 2016. Forest management planning of China (2016—2050). Beijing: State Forestry Bureau. [in Chinese]
|
|
黑龙江省质量技术监督局. 2004. 市县林区商品林主要树种出材率表(DB23/T 870-2004). 哈尔滨: 黑龙江省质量技术监督局.
|
|
Quality and Technical Supervision Bureau of Heilongjiang. 2004. Timber yield table of main tree species of commercial forest in city and county forest area (DB23/T 870-2004). Harbin: Quality and Technical Supervision Bureau of Heilongjiang. [in Chinese]
|
|
胡海清, 罗碧珍, 魏书精, 等. 大兴安岭5种典型林型森林生物碳储量. 生态学报, 2015, 35 (17): 5745- 5760.
|
|
Hu H Q, Luo B Z, Wei S J, et al. Estimating biological carbon storage of five typical forest types in the Daxing’anling Mountains, Heilongjiang, China. Acta Ecologica Sinica, 2015, 35 (17): 5745- 5760.
|
|
胡海清, 魏书精, 孙 龙. 1965-2010年大兴安岭森林火灾碳排放的估算研究. 植物生态学报, 2012, 36 (7): 629- 644.
|
|
Hu H Q, Wei S J, Sun L. Estimation of carbon emissions due to forest fire in Daxing’anling Mountains from 1965 to 2010. Chinese Journal of Plant Ecology, 2012, 36 (7): 629- 644.
|
|
黄 超, 贺红士, 梁 宇, 等. 气候变化、林火和采伐对大兴安岭森林碳储量的影响. 应用生态学报, 2018, 29 (7): 2088- 2100.
|
|
Huang C, He H S, Liang Y, et al. Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing’an Mountains, China. Chinese Journal of Applied Ecology, 2018, 29 (7): 2088- 2100.
|
|
李海奎, 雷渊才, 曾伟生. 基于森林清查资料的中国森林植被碳储量. 林业科学, 2011, 47 (7): 7- 12.
doi: 10.11707/j.1001-7488.20110702
|
|
Li H K, Lei Y C, Zeng W S. Forest carbon storage in China estimated using forestry inventory data. Scientia Silvae Sinicae, 2011, 47 (7): 7- 12.
doi: 10.11707/j.1001-7488.20110702
|
|
刘 琦, 蔡慧颖, 金光泽. 择伐对阔叶红松林碳密度和净初级生产力的影响. 应用生态学报, 2013, 24 (10): 2709- 2716.
|
|
Liu Q, Cai H Y, Jin G Z. Effects of selective cutting on the carbon density and net primary productivity of a mixed broadleaved-Korean pine forest in Northeast China. Chinese Journal of Applied Ecology, 2013, 24 (10): 2709- 2716.
|
|
潘思涵, 程宇琪, 杜 浩, 等. 大兴安岭森林演替过程中凋落物分解与DOC释放研究. 西南林业大学学报, 2019, 39 (5): 75- 83.
|
|
Pan S H, Cheng Y Q, Du H, et al. Litter decomposition and DOC release during forest succession in Greater Khingan Mountains. Journal of Southwest Forestry University, 2019, 39 (5): 75- 83.
|
|
秦添男, 贾卫国. 森林采伐限额制度研究综述. 中国林业经济, 2021, 3, 45- 48.
|
|
Qin T N, Jia W G. Summary of research on forest cutting quota system. China Forestry Economics, 2021, 3, 45- 48.
|
|
戎建涛, 雷相东, 张会儒, 等. 兼顾碳贮量和木材生产目标的森林经营规划研究. 西北林学院学报, 2012, 27 (2): 155- 162.
doi: 10.3969/j.issn.1001-7461.2012.02.32
|
|
Rong J T, Lei X D, Zhang H R, et al. Forest management planning incorporating values of timber and carbon. Journal of Northeast Forestry University, 2012, 27 (2): 155- 162.
doi: 10.3969/j.issn.1001-7461.2012.02.32
|
|
孙云霞, 刘兆刚, 董灵波. 2019. 基于模拟退火算法逆转搜索的森林空间经营规划. 林业科学, 55(11): 52−62.
|
|
Sun Y X, Liu Z G, Dong L B. 2019. Spatial forest management planning based on reversion search technique of simulated annealing algorithm. Scientia Silvae Sinicae, 55(11): 52-62. [in Chinese]
|
|
田艳林. 2020. 黑龙江流域植被物候对气候变化响应的多尺度研究. 北京: 中国科学院大学.
|
|
Tian Y L. 2020. Multi-scale study on vegetation phenology and its climatic change responses in the Amur River Basin. Beijing: University of Chinese Academy of Sciences. [in Chinese]
|
|
王 飞. 2013. 兴安落叶松天然林碳密度与碳平衡研究. 呼和浩特: 内蒙古农业大学.
|
|
Wang F. 2013. Research on the carbon density and carbon balance of Larix gmelinii forest. Huhhot: Inner Mongolia Agricultural University. [in Chinese]
|
|
王鹤智. 2012. 东北林区林分生长动态模拟系统的研究. 哈尔滨: 东北林业大学.
|
|
Wang H Z. 2012. Dynamic simulating system for stand growth of forests in Northeast China. Harbin: Northeast Forestry University. [in Chinese]
|
|
徐文茹, 贺红士, 罗 旭, 等. 停止商业性采伐对大兴安岭森林结构与地上生物量的影响. 生态学报, 2018, 38 (4): 1203- 1215.
|
|
Xu W R, He H S, Luo X, et al. Long-term effects of commercial harvest exclusion on forest structure and aboveground biomass in the Great Xing’an Mountains, China. Acta Ecologica Sinica, 2018, 38 (4): 1203- 1215.
|
|
杨新芳, 鲍雪莲, 胡国庆, 等. 大兴安岭不同火烧年限森林凋落物和土壤C、N、P化学计量特征. 应用生态学报, 2016, 27 (5): 1359- 1367.
|
|
Yang X F, Bao X L, Hu G Q, et al. C∶N∶P stoichiometry characteristics of litter and soil of forests in Great Xing’an Mountains with different fire years. Chinese Journal of Applied Ecology, 2016, 27 (5): 1359- 1367.
|
|
张秋良, 王 飞, 李小梅, 等. 藓类-兴安落叶松林木质物残体贮量及组成. 生态环境学报, 2013, 22 (3): 437- 442.
doi: 10.3969/j.issn.1674-5906.2013.03.015
|
|
Zhang Q L, Wang F, Li X M, et al. Storage and composition of coarse woody debris in natural SPhagnum-Bryum-Larix gmelinii forests of Daxing’anling Mountains. Ecology and Environmental Sciences, 2013, 22 (3): 437- 442.
doi: 10.3969/j.issn.1674-5906.2013.03.015
|
|
赵鹏武. 2009. 大兴安岭兴安落叶松林凋落物动态与养分释放规律研究. 呼和浩特: 内蒙古农业大学.
|
|
Zhao P W. 2009. Studies on litterfall dynamics and nutrient release regularity of Larix gmelinii in Great Xingan Mountains. Huhhot: Inner Mongolia Agricultural University. [in Chinese]
|
|
周 媛, 郑丽凤, 周新年, 等. 2018. 基于采伐剩余物的生物质固体燃料生态效益分析. 森林工程, 34(1): 28-33, 44.
|
|
Zhou Y, Zheng L F, Zhou X N, et al. 2018. Eco-benefit evaluation of biomass solid fuel based on forest cutting residues. Forest Engineering, 34(1): 28−33, 44. [in Chinese]
|
|
Asante P, Armstrong G W. Optimal forest harvest age considering carbon sequestration in multiple carbon pools: a comparative statics analysis. Journal of Forest Economics, 2012, 18 (2): 145- 156.
doi: 10.1016/j.jfe.2011.12.002
|
|
Bettinger P, Graetz D, Boston K, et al. Eight heuristic planning techniques applied to three increasingly difficult wildlife planning problems. Silva Fennica, 2002, 36 (2): 561- 584.
|
|
Dong L B, Lu W, Liu Z G. Determining the optimal rotations of larch plantations when multiple carbon pools and wood products are valued. Forest Ecology and Management, 2020, 474, 118356.
doi: 10.1016/j.foreco.2020.118356
|
|
Dong L, Wei L, Liu Z. Developing alternative forest spatial management plans when carbon and timber values are considered: a real case from northeastern China. Ecological Modelling, 2018, 385, 45- 57.
doi: 10.1016/j.ecolmodel.2018.07.009
|
|
Fang J Y, Yu G R, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences, 2018, 115 (16): 4015- 4020.
doi: 10.1073/pnas.1700304115
|
|
Hoel M, Holtsmark B, Holtsmark K, 2014. Faustmann and the climate. Journal of Forest Economics , 20:192–210.
|
|
IPCC. Good practice guidance for land use, land-use change and forestry. IPCC, Kanagawa, Japan, 2003. https://www.ipcc-tfi.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL. pdf.
|
|
Liski J, Palosuo T, Peltoniemi M, et al. Carbon and decomposition model Yasso for forest soils. Ecological Modelling, 2005, 189, 168- 182.
doi: 10.1016/j.ecolmodel.2005.03.005
|
|
Olson J S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44 (2): 322- 331.
|
|
Pukkala T. Optimizing forest management in Finland with carbon subsidies and taxes. Forest Policy and Economics, 2011, 13 (6): 425- 434.
doi: 10.1016/j.forpol.2011.06.004
|
|
Pukkala T. Carbon forestry is surprising. Forest Ecosystems, 2018, 5, 11.
doi: 10.1186/s40663-018-0131-5
|
|
Wang B, Li M Z, Fan W Y, et al. 2016. Quantitative simulation of C budgets in a forest in Heilongjiang province, China. iForest, 10: 128-135.
|
|
Wihersaari M. Greenhouse gas emissions from final harvest fuel chip production in Finland. Biomass and Bioenergy, 2005, 28, 435- 443.
doi: 10.1016/j.biombioe.2004.11.007
|
|
Zengin H, Ünal M E. Analyzing the effect of carbon prices on wood production and harvest scheduling in a managed forest in Turkey. Forest Policy and Economics, 2019, 103, 28- 35.
doi: 10.1016/j.forpol.2017.10.017
|
|
Zhou W, Gao L. The impact of carbon trade on the management of short-rotation forest plantations. Forest Policy and Economics, 2016, 62, 30- 35.
doi: 10.1016/j.forpol.2015.10.008
|