|
高超, 林红蕾, 胡海清, 等. 我国林火发生预测模型研究进展. 应用生态学报, 2020, 31 (9): 3227- 3240.
|
|
Gao G , Lin H L , Hu H Q , et al. Research progress of forest fire prediction model in China. Journal of Applied Ecology, 2020, 31 (9): 3227- 3240.
|
|
耿冰, 孙义博, 曾巧林, 等. 基于深度学习方法的PM_(2.5)精细化时空估算模型. 中国环境科学, 2021, 41 (8): 3502- 3510.
|
|
Geng B , Sun Y B , Zeng Q L , et al. PM based on deep learning method_(2.5) refined spatiotemporal estimation model. China Environmental Science, 2021, 41 (8): 3502- 3510.
|
|
郭建军, 张晓峰, 纪月, 等. 崇礼区域生态环境综合评价. 防护林科技, 2021, (1): 10- 12.10-12, 15
|
|
Guo J J , Zhang X F , Ji Y , et al. Comprehensive evaluation of ecological environment in Chongli region. Shelter forest science and technology, 2021, (1): 10- 12.10-12, 15
|
|
郭新彬, 郑文霞, 曾爱聪, 等. 美国林火管理概况及分析. 应用生态学报, 2019, 30 (12): 4361- 4368.
|
|
Guo X B , Zheng W X , Zeng A C , et al. Forest fire management in the United States. Chinese Journal of Applied Ecology, 2019, 30 (12): 4361- 4368.
|
|
刘曦, 金森. 平衡含水率法预测死可燃物含水率的研究进展. 林业科学, 2007, 43 (12): 126- 133.
|
|
Liu X , Jin S . research progress in predicting moisture content of dead combustibles by equilibrium moisture content method. Forestry Science, 2007, 43 (12): 126- 133.
|
|
刘昕, 邸雪颖. 三种方法对森林地表可燃物含水率的预测评价. 森林工程, 2013, 29 (2): 8- 13.8-13, 20
|
|
Liu X , Di X Y . Prediction and evaluation of moisture content of forest surface combustibles by three methods. Forest engineering, 2013, 29 (2): 8- 13.8-13, 20
|
|
吕杰. 2012. 基于机器学习和辐射传输模型的农作物叶绿素含量高光谱反演模型. 北京: 中国地质大学(北京).
|
|
Lü J. 2012. Hyperspectral inversion model of crop chlorophyll content based on machine learning and radiative transfer model. Beijing: China University of Geosciences(Beijing). [in Chinese]
|
|
潘佩芬, 杨武年, 简季, 等. 基于光谱指数的植被含水率遥感反演模型研究——以岷江上游毛尔盖地区为例. 遥感信息, 2013, 28 (3): 69- 73.
|
|
Pan P F , Yang W N , Jian J , et al. Study on remote sensing inversion model of vegetation moisture content based on spectral index—Taking Maoergai area in the upper reaches of Minjiang River as an example. Remote Sensing Information, 2013, 28 (3): 69- 73.
|
|
申洪源, 马亮, 张雅楠, 等. 基于多传感器和SVR算法的油田多相流实时计量技术研究. 仪器仪表用户, 2019, 26 (10): 15- 19.
|
|
Shen H Y , Ma L , Zhang Y N , et al. Research on real-time measurement technology of oilfield multiphase flow based on multisensor and SVR algorithm. Instrument Users, 2019, 26 (10): 15- 19.
|
|
王熊. 2020. 基于哨兵二号的森林动态变化检测方法研究. 武汉: 华中农业大学.
|
|
Wang X. 2020. Study on forest dynamic change detection method based on sentry 2. Wuhan: Huazhong Agricultural University. [in Chinese]
|
|
谢字希. 2016. 黑龙江大兴安岭地区森林枯落物含水率遥感反演. 哈尔滨: 东北林业大学.
|
|
Xie Z X. 2016. Remote sensing inversion of forest litter moisture content in Daxing'anling area, Heilongjiang Province. Harbin: Northeast Forestry University. [in Chinese]
|
|
谢字希, 胡海清, 杨曦光, 等. 基于实测光谱的大兴安岭地区典型森林枯落物含水率估测模型. 生态学杂志, 2017, 36 (11): 3321- 3328.
|
|
Xie Z X , Hu H Q , Yang X G , et al. Estimation model of water content of typical forest litter in Daxing'anling area based on measured spectrum. Journal of Ecology, 2017, 36 (11): 3321- 3328.
|
|
张佳华, 许云, 姚凤梅, 等. 植被含水量光学遥感估算方法研究进展. 中国科学: 技术科学, 2010, 40 (10): 1121- 1129.
|
|
Zhang J H , Xu Y , Yao F M , et al. Research progress on optical remote sensing estimation method of vegetation water content. Chinese Science: Technical Science, 2010, 40 (10): 1121- 1129.
|
|
张恒, 刘鑫源, 李星汉, 等. 我国气象要素回归法预测地表可燃物含水率研究进展. 森林防火, 2018, (3): 25- 31.
|
|
Zhang H , Liu X Y , Li X H , et al. Research progress on prediction of surface combustible moisture content by meteorological factor regression method in China. Forest Fire Prevention, 2018, (3): 25- 31.
|
|
赵美霞. 2021. 北京2022年冬奥会背景下河北省冰雪运动政策研究. 北京: 首都体育学院.
|
|
Zhao M X. 2021. Research on ice and snow sports policy of Hebei Province under the background of Beijing 2022 Winter Olympic Games. Beijing: Capital Institute of Physical Education. [in Chinese]
|
|
赵永光, 马灵玲, 李传荣, 等. 基于冠层辐射传输模型的地表反射率光谱重建方法. 光谱学与光谱分析, 2015, 35 (7): 1763- 1769.
|
|
Zhao Y G , Ma L L , Li C R , et al. Spectral reconstruction method of surface reflectance based on canopy radiative transfer model. Spectroscopy and Spectral Analysis, 2015, 35 (7): 1763- 1769.
|
|
Barmpoutis P , Papaioannou P , Dimitropoulos K , et al. A review on early forest fire detection systems using optical remote sensing. Sensors, 2020, 20 (22)
|
|
Maffei C , Lindenbergh R , Menenti M . Combining multi-spectral and thermal remote sensing to predict forest fire characteristics. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181, 400- 412.
|
|
Mohajane M , Costache R , Karimi F , et al. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, 2021, 129, 107869.
|
|
Moritz M A , Batllori E , Bradstock R A . Learning to coexist with wildfire. Nature, 2014, 515, 58- 66.
|
|
Pisek J , Erb A , Korhonen L , et al. Retrieval and validation of forest background reflectivity from daily Moderate Resolution Imaging Spectroradiometer(MODIS) bidirectional reflectance distribution function(BRDF) data across European forests. Biogeosciences, 2021, 18 (2): 621- 635.
|
|
Quan X , Yebra M , Riaño D , et al. Global fuel moisture content mapping from MODIS. International Journal of Applied Earth Observations and Geoinformation, 2021, 101, 102354.
|
|
Schneider F D , l Kükenbrink D , Schaepman M E , et al. Quantifying 3D structure and occlusion in dense tropical and temperate forests using close-range LiDAR. Agricultural and Forest Meteorology, 2019, 268
|
|
Ye Q , Huang P , Zhang Z , et al. Multiview learning with robust double-sided twin SVM. IEEE Transactions on Cybernetics, 2021,
|