林业科学 ›› 2022, Vol. 58 ›› Issue (3): 1-9.doi: 10.11707/j.1001-7488.20220301
刘晨,张春雨*,赵秀海
收稿日期:
2021-05-20
出版日期:
2022-03-25
发布日期:
2022-06-02
通讯作者:
张春雨
基金资助:
Chen Liu,Chunyu Zhang*,Xiuhai Zhao
Received:
2021-05-20
Online:
2022-03-25
Published:
2022-06-02
Contact:
Chunyu Zhang
摘要:
目的: 研究采伐干扰对吉林蛟河天然次生针阔混交林林分生产力稳定性的影响,以期为针阔混交林的可持续经营提供理论依据。方法: 2011年7月在吉林蛟河建立4块1 hm2的针阔混交林采伐样地,2011年12月进行抚育采伐,采伐强度为2.7%~77.6%,平均值为39.2%,并于2013、2015和2018年复测保留木,利用样地中100个连续样方的木本植物数据,通过线性回归模型分析采伐强度、林分密度、土壤养分、林木大小分化(胸径Shannon-Wiener指数)和物种多样性(物种Simpson指数)与生产力稳定性的相关性;运用方差分解分析比较不同变量对生产力稳定性的贡献;进而利用结构方程模型探讨采伐对林木大小分化、物种多样性和生产力稳定性的影响及林木大小分化、物种多样性和生产力稳定性之间的关系。结果: 采伐强度与生产力稳定性无显著关系,物种多样性和林木大小分化与生产力稳定性均呈显著正相关(P < 0.05),林分密度对生产力稳定性有显著负影响(P < 0.05)。在方差分解中,物种多样性单独解释生产力稳定性的19.5%;林分密度和林木大小分化对生产力稳定性的贡献率分别为7.0%和7.6%。采伐强度对林分密度、土壤养分(土壤碳、氮、磷、钙含量的第一主成分)、林木大小分化有极显著的负向影响(P < 0.001),路径系数分别为-0.629、-0.316和-0.255,而对物种多样性和生产力稳定性没有显著影响;林分密度、物种多样性和林木大小分化对生产力稳定性都有显著影响(P < 0.05),路径系数分别为-2.063、1.652和1.463。林分密度、林木大小分化对生产力稳定性有显著的负向总效应(P < 0.05),路径系数分别为-2.365和-0.556,物种多样性对生产力稳定性有显著正向总效应(P < 0.05),路径系数为1.652;土壤养分对生产力稳定性无显著的负向总效应的效应;采伐强度对生产力稳定性没有直接显著影响,通过物种多样性和土壤养分对生产力稳定性的间接影响也不显著,而是主要通过林分密度和林木大小分化来影响生产力稳定性的变化,采伐强度对生产力稳定性有显著(P < 0.05)的负向总效应,路径系数为-0.290。结论: 采伐强度对生产力稳定性没有直接影响,与生产力稳定性直接相关的影响因素是林分密度、林木大小分化和物种多样性,而采伐是通过调整林分密度和林木大小分化来间接影响生产力稳定性,从而影响森林生产力的变化。因此,在森林经营管理中,合理进行采伐干扰对促进森林生产力稳定性具有重要意义。
中图分类号:
刘晨,张春雨,赵秀海. 采伐干扰对吉林蛟河针阔混交林生产力稳定性的影响[J]. 林业科学, 2022, 58(3): 1-9.
Chen Liu,Chunyu Zhang,Xiuhai Zhao. Effects of Disturtance by Thinning on Productivity Stability of Conifer-Broadleaf Mixed Forest in Jiaohe, Jilin Province[J]. Scientia Silvae Sinicae, 2022, 58(3): 1-9.
表1
样地概况"
样地 Plot | 纬度 Latitude | 经度 Longitude | 海拔 Altitude/m | 坡度 Slope grade /(°) | 坡向 Aspect | 树高 Tree height /m | DBH /cm | 郁闭度 Canopy density |
1 | 43°57.748′N | 127°43.888′E | 453 | 1 | NE | 9.75±0.13 | 14.60±0.45 | 0.9 |
2 | 43°57.784′N | 127°44.388′E | 443 | 4 | NE | 9.67±0.11 | 14.90±0.37 | 0.9 |
3 | 43°58.062′N | 127°44.317′E | 430 | 5 | NE | 9.57±0.20 | 14.25±0.40 | 0.9 |
4 | 43°58.384′N | 127°45.532′E | 497 | 3 | NE | 8.86±0.19 | 13.93±0.33 | 0.9 |
表2
物种多样性和林木大小分化指标的计算公式①"
项目Item | 指标Index | 计算公式Formula |
物种多样性 Species diversity | 物种丰富度(S) Species richness | S=NS |
物种Simpson指数(DS) Species Simpson index | ||
物种Shannon-Wiener指数(HS) Species Shannon-Wiener index | ||
林木大小分化 Size differentiation | 胸径Shannon-Wiener指数(Hd) DBH Shannon-Wiener index | |
胸径Simpson指数(Dd) DBH Simpson index | ||
胸径变异系数(VD) DBH coefficient of variation |
表3
各主成分载荷系数及其贡献率"
项目 Item | 土壤养分含量 Soil nutrient content | 第一主成分 Component 1 | 第二主成分 Component 2 |
全碳含量 Total carbon content | 0.115 | 0.782 | |
载荷系数 Loadings | 全氮含量 Total nitrogen content | -0.279 | 0.865 |
全磷含量 Total phosphorous content | 0.511 | 0.474 | |
全钙含量 Total calcium content | 0.576 | -0.115 | |
贡献率 Proportion of variance(%) | 72.9 | 25.7 | |
累计贡献率 Cumulative proportion(%) | 72.9 | 98.6 |
表4
结构方程模型中各变量的直接、间接和总效应"
解释性变量Explanatory variables | 影响生产力稳定性的路径Paths to effecting productivity stability | 显著性Significance |
采伐强度 Thinning intensity | 直接效应Direct effect | 0.056 |
通过林分密度的间接效应Indirect effect via stand density | -0.401** | |
通过土壤养分的间接效应Indirect effect via soil nutrition | -0.016 | |
通过林木大小分化的间接效应Indirect effect via tree size differentiation | 0.142* | |
通过物种多样性的间接效应Indirect effect via species diversity | -0.071 | |
总效应Total effect | -0.290** | |
林分密度 Stand density | 直接效应Direct effect | -2.063*** |
通过林木大小分化的间接效应Indirect effect via tree size differentiation | -0.401** | |
通过物种多样性的间接效应Indirect effect via species diversity | 2.992*** | |
总效应Total effect | -2.365*** | |
土壤养分 Soil nutrition | 直接效应Direct effect | -0.102 |
通过林木大小分化的间接效应Indirect effect via size differentiation | 0.048 | |
通过物种多样性的间接效应Indirect effect via species diversity | 0.099 | |
总效应Total effect | 0.045 | |
林木大小分化 Tree size differentiation | 直接效应Direct effect | 1.463** |
通过物种多样性的间接效应Indirect effect via species diversity | -2.019*** | |
总效应Total effect | -0.556** | |
物种多样性 Species diversity | 直接效应Direct effect | 1.652*** |
总效应Total effect | 1.652*** |
鲍士旦. 土壤农化分析. 3版 北京: 中国农业出版社, 2000. | |
Bao S D . Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. | |
常伟. 2015. 秦岭主要天然次生林抚育经营效果评价. 杨凌: 西北农林科技大学. | |
Chang W. 2015. Assessment of thinning effects on natural secondary forests in the Qinling Mountains. Yangling: Northwest A & F University. [in Chinese] | |
郝珉辉, 李晓宇, 夏梦洁, 等. 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响. 林业科学, 2018, 54 (5): 1- 9. | |
Hao M H , Li X Y , Xia M J , et al. Effects of tending felling on functional and phylogenetic structures in a multi-species temperate secondary forest at Jiaohe in Jilin Province. Scientia Silvae Sinicae, 2018, 54 (5): 1- 9. | |
雷相东, 陆元昌, 张会儒, 等. 抚育间伐对落叶松云冷杉混交林的影响. 林业科学, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
Lei X D , Lu Y C , Zhang H R . Effects of thinning on mixed stands of Larix olgensis, Abies nephrolepis and Picea jazoensis. Scientia Silvae Sinicae, 2005, 41 (4): 78- 85.
doi: 10.3321/j.issn:1001-7488.2005.04.014 |
|
李建, 彭鹏, 何怀江, 等. 采伐对吉林蛟河针阔混交林空间结构的影响. 北京林业大学学报, 2017, 39 (9): 48- 57. | |
Li J , Peng P , He H J , et al. Effects of thinning intensity on spatial structure of multi-species temperate forest at Jiaohe in Jilin Province, northeastern China. Journal of Beijing Forestry University, 2017, 39 (9): 48- 57. | |
李瑞霞, 马洪靖, 闵建刚, 等. 间伐对马尾松人工林林下植物多样性的短期和长期影响. 生态环境学报, 2012, 21 (5): 807- 812. | |
Li R X , Ma H J , Min J G , et al. Short-term and long-term effects of thinning on the undergrowth diversity in the Pinus massoniana plantation. Ecology and Environmental Sciences, 2012, 21 (5): 807- 812. | |
娄明华, 白超, 惠刚盈, 等. 7个林木大小多样性指数表达能力比较. 生物多样性, 2019, 27 (4): 449- 456. | |
Luo) M H , Bai C , Hui G Y , et al. Comparison of distinguish ability on seven tree size diversity indices. Biodiversity Science, 2019, 27 (4): 449- 456. | |
罗菊春. 抚育改造是森林生态系统经营的关键性措施. 北京林业大学学报, 2006, 28 (1): 121- 124.
doi: 10.3321/j.issn:1000-1522.2006.01.025 |
|
Luo J C . Tending thinning-improvement of stands is a crucial measure in forest ecosystem management. Journal of Beijing Forestry University, 2006, 28 (1): 121- 124.
doi: 10.3321/j.issn:1000-1522.2006.01.025 |
|
谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 2017, 41 (11): 1149- 1156. | |
Tan L Z , Fan C Y , Fan X H . Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 2017, 41 (11): 1149- 1156. | |
魏安然, 张雨秋, 谭凌照, 等. 抚育采伐对针阔混交林林分结构及物种多样性的影响. 北京林业大学学报, 2019, 41 (5): 148- 158. | |
Wei A R , Zhang Y Q , Tan L Z , et al. Effects of tending felling on stand structure and species diversity of mixed coniferous and broadleaved forest. Journal of Beijing Forestry University, 2019, 41 (5): 148- 158. | |
吴晓荣, 叶祥盛, 赵竹青. 流动注射法与凯氏定氮法测定土壤全氮的比较. 华中农业大学学报, 2009, 28 (5): 560- 563.
doi: 10.3321/j.issn:1000-2421.2009.05.010 |
|
Wu X R , Ye X S , Zhao Z Q . Comparison of determining the soil total nitrogen concentration with a continuous flow injection analyzer and Kjeldahl method. Journal of Huazhong Agricultural University, 2009, 28 (5): 560- 563.
doi: 10.3321/j.issn:1000-2421.2009.05.010 |
|
周建云, 李荣, 张文辉, 等. 不同间伐强度下辽东栎种群结构特征与空间分布格局. 林业科学, 2012, 48 (4): 149- 155. | |
Zhou J Y , Li R , Zhang W H , et al. Effects of thinning intensity on structure characteristics and spatial distribution of Quercus wutaishanica populations. Scientia Silvae Sinicae, 2012, 48 (4): 149- 155. | |
Ali A , Lin S L , He J K , et al. Climate and soils determine aboveground biomass indirectly via species diversity and stand structural complexity in tropical forests. Forest Ecology and Management, 2019, 432 (1): 823- 831. | |
Allison L E , Brown W J , Hayward H E , et al. Diagnosis and improvement of saline and alkali soils. Aibs Bulletin, 1968, 120 (3): 290. | |
Cardinale B J , Bennett D M , Nelson C E , et al. Does productivity drive diversity or vice versa? A test of the multivariate productivity-diversity hypothesis in streams. Ecology, 2009, 90 (5): 1227- 1241.
doi: 10.1890/08-1038.1 |
|
Cardinale B J , Duffy J E , Gonzalez A , et al. Biodiversity loss and its impact on humanity. Nature, 2012, 486 (7401): 59- 67.
doi: 10.1038/nature11148 |
|
Claros P M , Fredericksen T S , Alarcón A , et al. Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees. Forest Ecology and Management, 2008, 256 (7): 1458- 1467.
doi: 10.1016/j.foreco.2007.11.013 |
|
Dagley C M , Berrill J P , Leonard L P , et al. Restoration thinning enhances growth and diversity in mixed redwood/Douglas-fir stands in northern California, U. S. A.. Restoration Ecology, 2018, 26 (6): 1170- 1179.
doi: 10.1111/rec.12681 |
|
Dang P , Gao Y , Liu J , et al. Effects of thinning intensity on understory vegetation and soil microbial communities of a mature Chinese pine plantation in the Loess Plateau. Science of the Total Environment, 2018, 630 (15): 171- 180. | |
David A C , Georges K , Charles D C , et al. A greaterrange of shade-tolerance niches in nutrient-rich forests: an explanation forpositive richness-productivity relationships?. Journal of Ecology, 2009, 97 (4): 705- 717.
doi: 10.1111/j.1365-2745.2009.01507.x |
|
David A W , Michael A H , Grime J P , et al. Biodiversity and ecosystem function: an issue in ecology. Bulletin of the Ecological Society of America, 2000, 81 (3): 235- 239. | |
Fayolle A , Engelbrecht B , Freycon V , et al. Geological substrates shape tree species and trait distributions in African moist forests. PLoS ONE, 2012, 7 (8): e42381.
doi: 10.1371/journal.pone.0042381 |
|
Fotis A T , Murphy S J , Ricart R D , et al. Aboveground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. Journal of Ecology, 2017, 106 (2): 561- 570. | |
Fox J . Applied regression analysis and generalized linear models. 2nd ed Los Angeles: SAGE Publications, 2008: 665. | |
Fox J , Monette G . Generalized collinearity diagnostics. Journal of the American Statistical Association, 1992, 87 (417): 178- 183.
doi: 10.1080/01621459.1992.10475190 |
|
Fyllas N M , Patiño S , Baker T R , et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences, 2009, 6 (11): 2677- 2708.
doi: 10.5194/bg-6-2677-2009 |
|
Grace J B , Schoolmaster D R , Guntenspergen G R , et al. Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere, 2012, 3 (8): 44- 73. | |
Hautier Y , Seabloom E W , Borer E T , et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature, 2014, 508 (7497): 521- 525.
doi: 10.1038/nature13014 |
|
He H J , Zhang C Y , Zhao X H , et al. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests Northeastern China. PLoS One, 2018, 13, e0186226.
doi: 10.1371/journal.pone.0186226 |
|
Hector A , Hautier Y , Saner P , et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology, 2010, 91 (8): 2213- 2220.
doi: 10.1890/09-1162.1 |
|
Huang Y Y , Chen Y X , Castro-Izagujrre N , et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362 (6410): 80- 83.
doi: 10.1126/science.aat6405 |
|
Isbell F , Calcagno V , Hector A , et al. High plant diversity is needed to maintain ecosystem services. Nature, 2011, 477 (7363): 199- 202.
doi: 10.1038/nature10282 |
|
Isbell F I , Polley H W , Wilsey B J . Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecology Letters, 2009, 12 (5): 443- 451.
doi: 10.1111/j.1461-0248.2009.01299.x |
|
LeBauer D S , Treseder K K . Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, 89 (2): 371- 379.
doi: 10.1890/06-2057.1 |
|
Lehman C L , Tilman D . Biodiversity, stability, and productivity in competitive communities. The American Naturalist, 2000, 156 (5): 534- 552.
doi: 10.1086/303402 |
|
Li B , Wang Z Q . Estimation of nitrogen and phosphorus release rates at sediment-wates interface of Nansi Lakes, China. Advanced Materials Research, 2012, 74 (7): 573- 577. | |
Liang J , Crowther T W , Picard N , et al. Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354 (6309): 8957.
doi: 10.1126/science.aaf8957 |
|
Loreau M , Mazancourt D C , Duffy E . Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology Letters, 2013, 16 (S1): 106- 115. | |
Mazzochini G G , Fonseca C R , Costa G C , et al. Plant phylogenetic diversity stabilizes large-scale ecosystem productivity. Global Ecology and Biogeography, 2019, 28 (10): 1430- 1439.
doi: 10.1111/geb.12963 |
|
Ouyang S , Xiang W , Wang X , et al. Effects of stand age, richness and density on productivity in subtropical forests in China. Journal of Ecology, 2019, 107 (5): 2266- 2277.
doi: 10.1111/1365-2745.13194 |
|
Paoli G D , Curran L M , Zak D R . Phosphorus efficiency of Bornean rain forest productivity: evidence against the unimodal efficiency hypothesis. Ecology, 2005, 86 (6): 1548- 1561.
doi: 10.1890/04-1126 |
|
Proulx R , Wirth C , Voigt W , et al. Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands. PLoS One, 2010, 5 (10): e13382.
doi: 10.1371/journal.pone.0013382 |
|
Quesada C A , Phillips O L , Schwarz M , et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 2012, 9 (6): 2203- 2246.
doi: 10.5194/bg-9-2203-2012 |
|
Ruijven V J , Berendse F . Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences, 2005, 102 (3): 695- 700.
doi: 10.1073/pnas.0407524102 |
|
Shannon C E . Communication theory of secrecy systems. Bell Systems Technical Journal, 1949, 28 (4): 656- 715.
doi: 10.1002/j.1538-7305.1949.tb00928.x |
|
Simpson E H . Measurement of diversity. Nature, 1949, 163 (1): 688- 689. | |
Tilman D . The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 1999, 80 (5): 1455- 1474. | |
Tilman D , Isbell F , Cowles J M , et al. Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 2014, 45 (1): 471- 493.
doi: 10.1146/annurev-ecolsys-120213-091917 |
|
Tilman D , Reich P B , Knops J M H . Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441 (7093): 629- 632.
doi: 10.1038/nature04742 |
|
van der Plas F . Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 2019, 94 (4): 1220- 1245. | |
van der Sande M T , Marielos P C , Ascarrunz N , et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 2017, 105 (5): 1223- 1234.
doi: 10.1111/1365-2745.12756 |
|
Vilà M , Carrillo-Gavilán A , Vayreda J , et al. Disentangling biodiversity and climatic determinants of wood production. PLoS One, 2013, 8 (2): e53530.
doi: 10.1371/journal.pone.0053530 |
|
Walkley A , Black I A . An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 1934, 37 (1): 29- 38.
doi: 10.1097/00010694-193401000-00003 |
|
Wang C K . Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 2006, 222 (1/3): 9- 16. | |
Wang S , Loreau M , Liebhold A . Ecosystem stability in space: α, β and γ variability. Ecology Letters, 2014, 17 (8): 891- 901.
doi: 10.1111/ele.12292 |
|
Wu X , Wang X , Tang Z , et al. The relationship between species richness and biomass changes from boreal to subtropical forests in China. Ecography, 2015, 38 (6): 602- 613.
doi: 10.1111/ecog.00940 |
|
Yachi S , Loreau M . Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 2007, 10 (1): 54- 62.
doi: 10.1111/j.1461-0248.2006.00994.x |
|
Zhang Y , Han Y H C , Coomes D . Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 2015, 103 (5): 1245- 1252.
doi: 10.1111/1365-2745.12425 |
[1] | 董雪, 李永华, 辛智鸣, 段瑞兵, 姚斌, 包岩峰, 张正国, 刘源. 河西走廊西段荒漠戈壁灌木群落物种多样性的海拔格局[J]. 林业科学, 2021, 57(2): 168-178. |
[2] | 黄元, 杨洁, 秦悦婷, 石亚男, 温亚利. 森林旅游背景下游客的生态公益林保护行为意愿[J]. 林业科学, 2021, 57(10): 145-156. |
[3] | 庞荣荣,彭潔莹,闫琰. 太白山次生锐齿栎林地上生物量影响因素[J]. 林业科学, 2021, 57(10): 157-165. |
[4] | 王京,金屿淞,黄勇杰,李慧仁,刘芳蕊,刘学爽,王立中,刘丹丹,林英华. 采伐胁迫对大兴安岭针阔混交林地表节肢动物群落的长期影响[J]. 林业科学, 2020, 56(12): 177-186. |
[5] | 胡宗达,刘世荣,刘兴良,罗明霞,胡璟,李亚非,余昊,欧定华,吴德勇. 川西亚高山3种天然次生林土壤有机碳氮组分特征[J]. 林业科学, 2020, 56(11): 1-11. |
[6] | 李林,魏识广,马姜明,叶万辉,练琚愉. 生境异质性和扩散限制对南亚热带常绿阔叶林群落物种多样性的相对作用[J]. 林业科学, 2020, 56(10): 1-10. |
[7] | 何怀江, 张忠辉, 张春雨, 郝珉辉, 姚杰, 解蛰, 高海涛, 赵秀海. 采伐强度对东北针阔混交林林分生长和物种多样性的短期影响[J]. 林业科学, 2019, 55(2): 1-12. |
[8] | 刘鲁霞, 庞勇, 任海保, 李增元. 基于高分2号遥感数据估测中亚热带天然林木本植物物种多样性[J]. 林业科学, 2019, 55(2): 61-74. |
[9] | 张连刚,支玲,王光玉,李娅. 农户对退耕还林工程满意度的影响因素及提升路径——基于云南省鹤庆县和贵州省织金县的调查数据[J]. 林业科学, 2019, 55(12): 123-132. |
[10] | 任学敏, 朱雅, 陈兆进, 丁传雨, 李玉英, 杨改河. 太白山锐齿槲栎林乔木更新特征及其影响因子[J]. 林业科学, 2019, 55(1): 11-21. |
[11] | 郝珉辉, 李晓宇, 夏梦洁, 何怀江, 张春雨, 赵秀海. 抚育采伐对蛟河次生针阔混交林功能结构和谱系结构的影响[J]. 林业科学, 2018, 54(5): 1-9. |
[12] | 高尚坤, 肖文发, 曾立雄, 雷蕾, 黄志霖, 王松. 马尾松人工林干扰对土壤微生物群落结构的短期影响[J]. 林业科学, 2018, 54(12): 92-101. |
[13] | 刘生冬, 孟庆繁, 高文韬, 李燕. 张广才岭南段阔叶红松林天牛科昆虫物种多样性与成虫出现期时间动态[J]. 林业科学, 2016, 52(2): 74-81. |
[14] | 姚兰, 艾训儒, 吕世安, 冯广, 刘峻城, 黄永涛. 湖北星斗山天然次生林的群落类型、结构与物种多样性特征[J]. 林业科学, 2015, 51(11): 1-7. |
[15] | 戎建涛, 何友均. 不同森林经营模式对丹清河林场天然次生林碳贮量的影响[J]. 林业科学, 2014, 50(9): 26-35. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||