林业科学 ›› 2021, Vol. 57 ›› Issue (4): 107-115.doi: 10.11707/j.1001-7488.20210411
贺然1,2,王瑞珍2,应玥1,曲良建1,*,张永安1
收稿日期:
2020-03-02
出版日期:
2021-04-01
发布日期:
2021-05-21
通讯作者:
曲良建
基金资助:
Ran He1,2,Ruizhen Wang2,Yue Ying1,Liangjian Qu1,*,Yong'an Zhang1
Received:
2020-03-02
Online:
2021-04-01
Published:
2021-05-21
Contact:
Liangjian Qu
摘要:
目的: 研究松材线虫生防真菌伊氏线虫菌(EV)碳氮条件下表型和毒力基因表达差异,为培养高毒力菌株提供依据。方法: 分别选取碳、氮培养基培养EV,测定生长速度及产孢量。收获菌丝体并提取RNA进行建库和差异分析。结合经FDR法校正后的P值及以2为底的倍数变化的对数的绝对值(|log2FoldChange|)判断差异表达的显著性。结果: EV在氮培养条件下生长速度更快,且基因表达的总量和特异表达的数量均高于碳培养条件下表达的数量。氮组相对碳组显著差异表达的基因共有7 138个,其中3 571个显著上调,3 567个显著下调;474个基因在氮组中特异表达,295个基因在碳组中特异表达,且氮组特异表达的基因涉及杀线虫基因的数量高于碳组。经过聚类分析,差异基因表达水平变化趋势分为4个类群,其中,在氮组表达远高于碳组表达的基因数量为165个;在碳组表达远高于氮组表达的基因数量仅有65个。枯草杆菌蛋白酶及毒素合成相关基因在氮组中显著上调表达,其中枯草杆菌蛋白酶在氮组中表达量为相对于碳组表达的2.29~363.52倍。结论: 碳、氮培养基对EV生防真菌的转录具有显著影响,氮培养条件下表达的总基因数量和特异表达的基因数量高于碳培养条件下的基因表达。具有杀灭和侵染线虫作用的枯草杆菌蛋白酶、毒素合成相关基因在氮培养下显著上调。可为高毒力EV菌株的培养、基因功能研究和菌株改良提供重要依据。
中图分类号:
贺然,王瑞珍,应玥,曲良建,张永安. 伊氏线虫真菌碳氮条件下的表型和毒力基因表达差异[J]. 林业科学, 2021, 57(4): 107-115.
Ran He,Ruizhen Wang,Yue Ying,Liangjian Qu,Yong'an Zhang. Phenotypic and Virulence Gene Expression Difference of Esteya vermicola, A Biocontrol Fungus for Pine Wood Nematode under Carbon and Nitrogen Conditions[J]. Scientia Silvae Sinicae, 2021, 57(4): 107-115.
表1
碳氮组特有表达基因统计"
基因家族Gene family | 基因数量Gene number | |
N组N group | C组C group | |
短链脱氢酶家族Short-chain dehydrogenase | 9 | 5 |
酰胺酶Amidase | 5 | 2 |
真菌特异性转录因子结构域Fungal specific transcription factor domain | 15 | 5 |
糖基水解酶Glycosyl hydrolase 1 domain | 5 | 2 |
膜转运蛋白Major facilitator superfamily transporter 1 | 46 | 19 |
NAD结合域NAD-binding domains | 6 | 0 |
细胞色素P450 | 10 | 2 |
肽酶家族M20Peptidase family M20 | 1 | 1 |
枯草杆菌蛋白酶Peptidase_S8(Subtilase) | 3 | 0 |
蛋白激酶结构域Protein kinase domain | 5 | 4 |
糖转运蛋白Sugar transporter | 32 | 5 |
表2
图 8中cluster_1和cluster_2表达基因统计"
基因家族 Gene family | 类群1基因个数 Cluster 1 number | 类群2基因个数 Cluster 2 number |
短链脱氢酶家族Short-chain dehydrogenase | 7 | 2 |
真菌特异性转录因子结构域Fungal specific transcription factor domain | 4 | 0 |
膜转运蛋白MFS1Major facilitator superfamily transporter 1 | 8 | 3 |
钙蛋白酶Calpain | 1 | 0 |
丝氨酸羧肽酶S28Serine carboxypeptidase S28 | 1 | 0 |
枯草杆菌蛋白酶Peptidase_S8(Subtilase) | 2 | 0 |
糖转运蛋白Sugar transporter | 10 | 5 |
表3
丝氨酸蛋白酶基因在碳氮组的差异表达统计"
基因编号 Gene id | 差异倍数的log2值 log2FoldChange | 校正的P值 Padj | 肽酶家族 Peptidase family |
ZGLK4627 | 8.51 | 0.00E+00 | S8 |
ZGLK1913 | 7.68 | 6.30E-174 | S8 |
ZGLK3896 | 4.15 | 3.27E-66 | S8 |
ZGLK1367 | 4.02 | 1.03E-91 | S8 |
ZGLK1021 | 3.75 | 6.00E-94 | S8 |
ZGLK1483 | 3.31 | 6.81E-17 | S8 |
novel.315 | 3.08 | 2.53E-29 | S8 |
ZGLK3512 | 2.83 | 3.33E-49 | S8 |
ZGLK4767 | 2.56 | 3.86E-32 | S8 |
ZGLK3672 | 2.33 | 6.06E-20 | S8 |
ZGLK1029 | 2.17 | 1.10E-06 | S8 |
ZGLK7350 | 1.70 | 1.32E-75 | S8 |
ZGLK3094 | 1.20 | 1.88E-36 | S8 |
ZGLK1168 | -0.96 | 2.40E-02 | S8 |
ZGLK2199 | 3.18 | 4.23E-65 | S28 |
ZGLK4188 | 1.84 | 1.04E-09 | S28 |
ZGLK5105 | 6.22 | 8.97E-186 | S28 |
表4
差异表达毒素相关基因统计①"
基因编号 Gene_id | 差异倍数的对数值 log2FoldChange | 校正的P值 Padj | 注释到的基因功能 Annotated gene function | PHI编号 PHI_id | PHI注释到的突变表型 Mutant phenotype |
ZGLK3633 | 4.48 | 9.85E-110 | CaE-EAKt | 133 | LP-GDi |
ZGLK0769 | 3.68 | 9.73E-127 | CaE-EAKt | 133 | LP-GDi |
ZGLK4572 | 3.64 | 4.10E-101 | RTtB | 2315 | IV-Oe |
ZGLK4189 | 2.99 | 1.13E-34 | RTtB | 2315 | IV-Oe |
ZGLK3112 | 2.73 | 6.35E-45 | RTtB | 2315 | RV-GDe |
ZGLK2791 | 2.68 | 1.43E-07 | RTtB | 2315 | RV-GDe |
ZGLK1171 | 2.42 | 9.63E-43 | RTtB | 2315 | IV-Oe |
ZGLK6482 | 2.27 | 2.60E-97 | AFtB | 508 | LP-GDi |
ZGLK4979 | 2.21 | 8.45E-19 | AMtB | 160 | LP-GDi |
ZGLK5521 | 1.76 | 4.72E-20 | RTtB | 2315 | RV-GDe |
ZGLK2782 | 1.74 | 2.92E-12 | RTtB | 2315 | IV-Oe |
ZGLK5292 | 1.65 | 3.36E-46 | RTtB | 2315 | IV-Oe |
ZGLK6243 | 1.62 | 7.08E-15 | PolS | 55 | RV-GDi |
ZGLK1943 | 1.51 | 1.22E-14 | RTtB | 2315 | RV-GDe |
ZGLK1888 | 1.38 | 7.61E-08 | RTtB | 2315 | IV-Oe |
ZGLK6653 | 1.27 | 4.54E-12 | AKtB | 2832 | LP-GDe |
ZGLK2807 | 1.05 | 1.36E-16 | AFtB | 509 | LP-GDi |
ZGLK7429 | 1.02 | 5.33E-08 | PolS | 40 | RV-GDi |
ZGLK0285 | 0.81 | 5.16E-03 | RTtB | 2315 | IV-Oe |
ZGLK7585 | 0.69 | 3.47E-20 | RTtB | 2315 | RV-GDe |
ZGLK4528 | 0.65 | 2.95E-04 | RTtB | 2315 | IV-Oe |
ZGLK8291 | 0.62 | 1.15E-10 | ProMARTXt | 3354 | RV-GDe |
ZGLK0925 | -0.41 | 1.88E-02 | RTtB | 2315 | RV-GDe |
ZGLK1334 | -0.61 | 2.80E-02 | RTtB | 2315 | IV-Oe |
ZGLK6815 | -1.11 | 2.93E-12 | HCtB | 97 | RV-GDi |
ZGLK2055 | -1.40 | 1.47E-30 | RTtB | 2315 | IV-Oe |
ZGLK1081 | -1.45 | 2.13E-14 | PolS | 55 | RV-GDi |
ZGLK4421 | -1.67 | 3.82E-07 | CaE-EAKt | PHI: 133 | LP-GDi |
蔡梦玲. 松材线虫在树干中的分布与松墨天牛成虫历期影响因素分析. 福州: 福建农林大学硕士学位论文, 2019. | |
Cai M L . Distributing PWN in Pinus massoniana and analysis of environmental factors impacting adulthood duration of Monochamus alernatus Hope. Fuzhou: MS thesis of Fujian Agriculture and Forestry University, 2019. | |
叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析. 林业科学, 2019, 55 (9): 1- 10. | |
Ye J R . Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures. Scientia Silvae Sinicae, 2019, 55 (9): 1- 10. | |
张锴, 梁军, 严冬辉, 等. 中国松材线虫病研究. 世界林业研究, 2010, 23 (3): 59- 63. | |
Zhang K , Liang J , Yan D H , et al. Research advances of pine wood nematode disease in China. World Forestry Research, 2010, 23 (3): 59- 63. | |
Bidochka M J , Khachatourians G G . Purification and properties of an extracellular protease produced by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology, 1987, 53 (7): 1679- 1684.
doi: 10.1128/AEM.53.7.1679-1684.1987 |
|
Bidochka M J , Melzer M J . Genetic polymorphisms in three subtilisin-like protease isoforms (Pr1A, Pr1B, and Pr1C) from Metarhizium strains. Canadian Journal of Microbiology, 2000, 46 (12): 1138- 1144.
doi: 10.1139/w00-112 |
|
de Freitas Soares F E , Sufiate B L , de Queiroz J H . Nematophagous fungi: Far beyond the endoparasite, predator and ovicidal groups. Agriculture and Natural Resources, 2018, 52 (1): 1- 8.
doi: 10.1016/j.anres.2018.05.010 |
|
Degenkolb T , Vilcinskas A . Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part Ⅰ: Metabolites from nematophagous ascomycetes. Applied Microbiology and Biotechnology, 2016a, 100 (9): 3799- 3812. | |
Degenkolb T , Vilcinskas A . Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part Ⅱ: Metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Applied Microbiology and Biotechnology, 2016b, 100 (9): 3813- 3824. | |
Futai K . Pine wood nematode, Bursaphelenchus xylophilus. Annual Review of Phytopathology, 2013, 51 (1): 61- 83.
doi: 10.1146/annurev-phyto-081211-172910 |
|
Huang X , Zhao N , Zhang K . Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Research in Microbiology, 2004, 155 (10): 811- 816.
doi: 10.1016/j.resmic.2004.07.003 |
|
Keniry C A , Li D , Ashby A M . Cloning and expression studies during vegetative growth and sexual development of Psp2, a serine protease gene from Pyrenopeziza brassicae. Biochimica et Biophysica Acta - Gene Structure and Expression, 2002, 1577 (1): 159- 163.
doi: 10.1016/S0167-4781(02)00408-6 |
|
Kershaw M J , Moorhouse E R , Bateman R , et al. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. Journal of Invertebrate Pathology, 1999, 74 (3): 213- 223.
doi: 10.1006/jipa.1999.4884 |
|
Khambay B P , Bourne J M , Cameron S , et al. A nematicidal metabolite from Verticillium chlamydosporium. Pest Management Science, 2000, 56 (12): 1098- 1099.
doi: 10.1002/1526-4998(200012)56:12<1098::AID-PS244>3.0.CO;2-H |
|
Leger R J , Charnley A K , Cooper R M . Characterization of cuticle-degrading proteases produced by the entomopathogen Metarhizium anisopliae. Archives of Biochemistry and Biophysics, 1987, 253 (1): 221- 232.
doi: 10.1016/0003-9861(87)90655-2 |
|
Li J , Gu F , Wu R , et al. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Scientific Reports, 2017, 7, 45456.
doi: 10.1038/srep45456 |
|
Liou J Y , Shih J Y , Tzean S S . Esteya, a new nematophagous genus from Taiwan, attacking the pinewood nematode (Bursaphelenchus xylophilus). Mycological Research, 1999, 103 (2): 242- 248.
doi: 10.1017/S0953756298006984 |
|
Llanos A , François J M , Parrou J L . Tracking the best reference genes for RT-qPCR data normalization in filamentous fungi. BMC Genomics, 2015, 16 (1): 71.
doi: 10.1186/s12864-015-1224-y |
|
López-Llorca L V, Maciá-Vicente J G, Jansson J B. 2008. Mode of action and interactions of nematophagous fungi//Ciancio A, Mukerji K G. Integrated management and biocontrol of vegetable and grain crop nematodes. Springer, Dordrecht, 51-76. | |
Lugli E B , Allen A G , Wakefield A E . A Pneumocystis carinii multi-gene family with homology to subtilisin-like serine proteases. Microbiology, 1997, 143 (7): 2223- 2236.
doi: 10.1099/00221287-143-7-2223 |
|
Meletiadis J , Meis J F , Mouton J W , et al. Analysis of growth characteristics of filamentous fungi in different nutrient media. Journal of Clinical Microbiology, 2001, 39 (2): 478- 484.
doi: 10.1128/JCM.39.2.478-484.2001 |
|
Mohamadzadeh M . Microbial toxins: Current research and future trends. Expert Review of Anti-infective Therapy, 2009, 7 (6): 695- 696.
doi: 10.1586/eri.09.42 |
|
Morgan-Jones G , Rodriguez-Kabana R . Phytonematode pathology: fungal modes of action. A perspective. Nematropica, 1985, 15 (1): 107- 114. | |
Morton C O , Hirsch P R , Kerry B R . Infection of plant-parasitic nematodes by nematophagous fungi—A review of the application of molecular biology to understand infection processes and to improve biological control. Nematology, 2004, 6 (2): 161- 170.
doi: 10.1163/1568541041218004 |
|
Morton C O , Hirsch P R , Peberdy J P , et al. Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 2003, 107 (1): 38- 46.
doi: 10.1017/S0953756202007050 |
|
Ottmann C , Luberacki B , Küfner I , et al. A common toxin fold mediates microbial attack and plant defense. Proceedings of the National Academy of Sciences, 2009, 106 (25): 10359- 10364.
doi: 10.1073/pnas.0902362106 |
|
Segers R , Butt T M , Kerry B R , et al. The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 1994, 140 (10): 2715- 2723.
doi: 10.1099/00221287-140-10-2715 |
|
Vicente C , Espada M , Vieira P , et al. Pine wilt disease: A threat to European forestry. European Journal of Plant Pathology, 2012, 133 (1): 89- 99.
doi: 10.1007/s10658-011-9924-x |
|
Wang B , Liu X , Wu W , et al. Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis. Microbiological Research, 2009, 164 (6): 665- 673.
doi: 10.1016/j.micres.2009.01.003 |
|
Wang B , Wu W P , Liu X Z . Purification and characterization of a neutral serine protease with nematicidal activity from Hirsutella rhossiliensis. Mycopathologia, 2007, 163 (3): 169- 176.
doi: 10.1007/s11046-007-0100-y |
|
Wang C Y , Yin C , Fang Z M , et al. Using the nematophagous fungus Esteya vermicola to control the disastrous pine wilt disease. Biocontrol Science and Technology, 2018, 28 (3): 268- 277.
doi: 10.1080/09583157.2018.1441369 |
|
Wang R , Dong L , He R , et al. Comparative genomic analyses reveal the features for adaptation to nematodes in fungi. DNA Research, 2018, 25 (3): 245- 256.
doi: 10.1093/dnares/dsx053 |
|
Wang R B , Yang J K , Lin C , et al. Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Letters in Applied Microbiology, 2006, 42 (6): 589- 594. | |
Wang Z , Zhang Y A , Wang C Y , et al. Esteya vermicola controls the pinewood nematode, Bursaphelenchus xylophilus, in pine seedlings. Journal of Nematology, 2017, 49 (1): 86- 91.
doi: 10.21307/jofnem-2017-048 |
|
Yang J , Huang X , Tian B , et al. Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity. Biotechnology Letters, 2005, 27 (15): 1123- 1128.
doi: 10.1007/s10529-005-8461-0 |
|
Yang J , Tian B , Liang L , et al. Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnology, 2007, 75 (1): 21- 31.
doi: 10.1007/s00253-007-0881-4 |
[1] | 朱丽华,章欣月,夏馨蕊,万羽,代善俊,叶建仁. 无细菌松材线虫对马尾松的致病性[J]. 林业科学, 2020, 56(7): 63-69. |
[2] | 曹业凡,汪来发,王曦茁,范结红. 松材线虫对长白落叶松的致病性[J]. 林业科学, 2020, 56(11): 108-115. |
[3] | 茅裕婷,马涛,蓝来娇,温秀军. 松材线虫生防真菌伊氏线虫菌研究进展[J]. 林业科学, 2020, 56(1): 180-190. |
[4] | 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9): 1-10. |
[5] | 刘果, 陈鸿鹏, 吴志华, 彭彦, 谢耀坚. 南美油藤种子发育过程的代谢组学和转录组学联合分析[J]. 林业科学, 2019, 55(5): 169-179. |
[6] | 孙婷玉, 王艳丽, 沈李元, 吴小芹, 朱丽华, 叶建仁. 培养基成分对黑松体胚发育成熟的影响[J]. 林业科学, 2019, 55(4): 178-186. |
[7] | 魏永成, 刘青华, 周志春, 徐六一, 陈雪莲, 郝焰平. 不同抗性马尾松接种松材线虫后针叶内化学信号物质的变化[J]. 林业科学, 2018, 54(2): 119-125. |
[8] | 姚伍, 郑催云, 陈红梅, 刘侃诚, 韩正敏. 福建三明市应用Smal-007菌剂防治松材线虫病的效果[J]. 林业科学, 2018, 54(1): 168-173. |
[9] | 王璇, 理永霞, 张星耀. 营养和蒎烯胁迫条件下松材线虫雌雄比变化规律[J]. 林业科学, 2017, 53(8): 149-154. |
[10] | 王璇, 理永霞, 刘振宇, 吕全, 贾秀贞, 张星耀. 松材线虫CYP450基因与松树蒎烯类物质代谢的相关性[J]. 林业科学, 2017, 53(6): 105-110. |
[11] | 林丽, 周蕾, 潘珺, 康李鹏, 叶建仁, 朱丽华. 无菌和带菌松材线虫对赤松的致病性[J]. 林业科学, 2017, 53(5): 82-87. |
[12] | 许建秀, 吴小芹, 叶建仁, 朱丽华, 吴静. 抗松材线虫病赤松体细胞胚的发育和成熟萌发[J]. 林业科学, 2017, 53(12): 41-49. |
[13] | 王海华, 褚洪龙, 谢清哲, 豆青, 冯欢, 杨超, 王春燕. 4个蠕虫埃斯特菌株的产孢能力及对松材线虫的侵染活力[J]. 林业科学, 2016, 52(9): 139-146. |
[14] | 王峰, 马玲, 陈俏丽, 王博文, 郝欣, 何芳林, 柳燕. 松材线虫热激转录因子Bx-HSF-1基因的克隆及表达分析[J]. 林业科学, 2016, 52(12): 92-98. |
[15] | 苟大平, 王曦茁, 汪来发, 田国忠, 朱天辉, 郭民伟. 一种适于PCR和LAMP检测的松木中松材线虫DNA快速提取方法[J]. 林业科学, 2015, 51(6): 100-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||