|
白云, 崔雨虹, 曹娜, 等. 球孢白僵菌对东亚飞蝗和梨冠网蝽侵染的温湿度效应. 中国生物防治学报, 2016, 32 (6): 735- 742.
|
|
Bai Y , Cui Y H , Cao N , et al. Effects of humidity and temperature on the pathogenecity of Beauveria bassiana against Stephanitis nashi and Locusta migratoria manilensis. Chinese Journal of Biological Control, 2016, 32 (6): 735- 742.
|
|
陈兵, 康乐. 昆虫对环境温度胁迫的适应与种群分化. 自然科学进展, 2005, 15 (3): 265- 271.
doi: 10.3321/j.issn:1002-008X.2005.03.002
|
|
Chen B , Kang L . Adaptation and population differentiation of insects to temperature stress. Progress in Natural Science, 2005, 15 (3): 265- 271.
doi: 10.3321/j.issn:1002-008X.2005.03.002
|
|
冯明光. 时间-剂量-死亡率模型取代机率分析技术. 昆虫知识, 1998, 35 (4): 233- 237.
|
|
Feng M G . Replacement of probability analysis technique to time-dose-mortality model. Entomological Knowledge, 1998, 35 (4): 233- 237.
|
|
蒋杰贤, 王东生, 曾爱平, 等. 温度对甜菜夜蛾核型多角体病毒流行的影响. 生态学报, 2004, 24 (8): 1724- 1730.
doi: 10.3321/j.issn:1000-0933.2004.08.020
|
|
Jiang J X , Wang D S , Zeng A P , et al. Influence of incubation and inoculation temperatures on the epizootic of Spodoptera exigua nuclear polyhedrosis virus. Acta Ecologica Sinica, 2004, 24 (8): 1724- 1730.
doi: 10.3321/j.issn:1000-0933.2004.08.020
|
|
秦晶, 张小香, 高鹏, 等. 一种新的昆虫热诱导型HSP70基因的克隆与表达分析. 应用昆虫学报, 2017, 54 (3): 380- 391.
|
|
Qin J , Zhang X X , Gao P , et al. Cloning and expression profile of a novel, thermal, inducible HSP70 gene in insects. Chinese Journal of Applied Entomology, 2017, 54 (3): 380- 391.
|
|
唐启义, 冯明光. DPS©数据处理系统——实验设计、统计分析及模型优化. 北京: 科学出版社, 2006.
|
|
Tang Q Y , Feng M G . DPS © Data processing system-experimental design, statistical analysis and modeling. Beijing: Science Press, 2006.
|
|
王小艺. 2005. 白蜡窄吉丁的生物学及其生物防治研究. 北京: 中国林业科学研究院博士后出站报告.
|
|
Wang X Y. 2005. Biology of the Emerald Ash Borer and Its Biological Control. Beijing: Postdoctoral Research Report of Chinese Academy of Forestry. [in Chinese]
|
|
王小艺, 杨忠岐, GouldJ R, 等. 白蜡窄吉丁(鞘翅目: 吉丁甲科)的生物防治研究进展. 中国生物防治学报, 2015, 31 (5): 666- 678.
|
|
Wang X Y , Yang Z Q , Gould J R , et al. Biological control progress of Agrilus planipennis (Coleoptera: Buprestidae). Chinese Journal of Biological Control, 2015, 31 (5): 666- 678.
|
|
王艳敏, 仵均祥, 万方浩. 昆虫对极端高低温胁迫的响应研究. 环境昆虫学报, 2010, 32 (2): 250- 255.
doi: 10.3969/j.issn.1674-0858.2010.02.018
|
|
Wang Y M , Wu J X , Wan F H . Response of insects to extreme high and low temperature stresses. Journal of Environmental Entomology, 2010, 32 (2): 250- 255.
doi: 10.3969/j.issn.1674-0858.2010.02.018
|
|
王智翔, 陈永林. 环境温湿度对狭翅雏蝗体温与含水量的影响. 昆虫学报, 1989, 32 (3): 278- 285.
doi: 10.3321/j.issn:0454-6296.1989.03.020
|
|
Wang Z X , Chen Y L . The influence of environmental temperature and humidity on the body temperature and water content of Chorthippus dubius (Zub.). Acta Entomologica Sinica, 1989, 32 (3): 278- 285.
doi: 10.3321/j.issn:0454-6296.1989.03.020
|
|
袁瑞玲, 杨珊, 冯丹, 等. 温度、湿度、光照对桔小实蝇飞行能力的影响. 环境昆虫学报, 2016, 38 (5): 903- 911.
|
|
Yuan R L , Yang S , Feng D , et al. Effects of temperature, humidity and light on the flight ability of Bactrocera dorsalis (Hendel). Journal of Environmental Entomology, 2016, 38 (5): 903- 911.
|
|
CFIA. [2019-07-01]. Natural resources Canada, emerald ash borer. https://www.nrcan.gc.ca/forests/fire-insects-disturbances/top-insects/13377.
|
|
Chiu M C , Kuo J J , Kuo M H . Life stage-dependent effects of experimental heat waves on an insect herbivore. Ecological Entomology, 2015, 40 (2): 175- 181.
doi: 10.1111/een.12173
|
|
Crosthwaite J C , Sobek S , Lyons D B , et al. The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Journal of Insect Physiology, 2011, 57 (1): 166- 173.
doi: 10.1016/j.jinsphys.2010.11.003
|
|
Duan J J , Watt T , Taylor P , et al. Effects of ambient temperature on egg and larval development of the invasive emerald ash borer (Coleoptera: Buprestidae): implications for laboratory rearing. Journal of Economic Entomology, 2013, 106 (5): 2101- 2108.
doi: 10.1603/EC13131
|
|
Duan J J , Jennings D E , Williams D C , et al. Patterns of parasitoid host utilization and development across a range of temperatures: implications for biological control of an invasive forest pest. BioControl, 2014, 59 (6): 659- 669.
doi: 10.1007/s10526-014-9604-9
|
|
Emana G D . Comparative studies of the influence of relative humidity and temperature on the longevity and fecundity of the parasitoid, Cotesia flavipes. Journal of Insect Science, 2007, 7, 1- 7.
|
|
Liang L , Fei S L . Divergence of the potential invasion range of emerald ash borer and its host distribution in North America under climate change. Climatic Change, 2014, 122 (4): 735- 746.
doi: 10.1007/s10584-013-1024-9
|
|
Morin R S , Liebhold A M , Pugh S A , et al. Regional assessment of emerald ash borer, Agrilus planipennis, impacts in forests of the Eastern United States. Biological Invasions, 2017, 19 (2): 703- 711.
doi: 10.1007/s10530-016-1296-x
|
|
Murphy T C , Gould J R , Van D , et al. Interactions between woodpecker attack and parasitism by introduced parasitoids of the emerald ash borer. Biological Control, 2018, 122, 109- 117.
doi: 10.1016/j.biocontrol.2018.04.011
|
|
Orlova-Bienkowskaja M J , Volkovitsh M G . Are native ranges of the most destructive invasive pests well known? A case study of the native range of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). Biological Invasions, 2018, 20 (5): 1275- 1286.
doi: 10.1007/s10530-017-1626-7
|
|
Preisler H K , Robertson J L . Analysis of time-dose-mortality data. Journal of Economic Entomology, 1989, 82 (6): 1534- 1542.
doi: 10.1093/jee/82.6.1534
|
|
Rigsby C M , Cipollini D , Amstutz E M , et al. Water conservation features of ova of Agrilus planipennis (Coleoptera: Buprestidae). Environmental Entomology, 2013, 42 (2): 363- 369.
doi: 10.1603/EN12226
|
|
Selikhovkin A V , Popovichev B G , Mandelshtam M Y , et al. The frontline of invasion: the current northern limit of the invasive range of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in European Russia. Baltic Forestry, 2017, 23 (1): 309- 315.
|
|
Simões P M , Ott S R , Niven J E . Environmental adaptation, phenotypic plasticity, and associative learning in insects: the desert locust as a case study. Integrative and Comparative Biology, 2016, 56 (5): 914- 924.
doi: 10.1093/icb/icw100
|
|
Singh T , Bhat M M , Khan M A . Insect adaptations to changing environments-temperature and humidity. International Journal of Industrial Entomology, 2009, 19 (1): 155- 164.
|
|
Tussey D A , Aukema B H , Charvoz A M , et al. Effects of adult feeding and overwintering conditions on energy reserves and flight performance of emerald ash borer (Coleoptera: Buprestidae). Environmental Entomology, 2018, 47 (3): 755- 763.
doi: 10.1093/ee/nvy040
|
|
USDA. Animal and plant health inspection service, emerald ash borer. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/pests-and-diseases/eme.
|
|
Wang L , Huang J , You M , et al. Time-dose-mortality modelling and virulence indices for six strains of Verticillium lecanii against sweetpotato whitefly, Bemisia tabaci (Gennadius). Journal of Applied Entomology, 2004, 128 (7): 494- 500.
doi: 10.1111/j.1439-0418.2004.00879.x
|
|
Xu Q , Zou Q , Zheng H Z , et al. Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 2011, 159 (2): 92- 102.
|