|  | 白云, 崔雨虹, 曹娜, 等.  球孢白僵菌对东亚飞蝗和梨冠网蝽侵染的温湿度效应. 中国生物防治学报, 2016, 32 (6): 735- 742. | 
																													
																						|  | Bai Y ,  Cui Y H ,  Cao N , et al.  Effects of humidity and temperature on the pathogenecity of Beauveria bassiana against Stephanitis nashi and Locusta migratoria manilensis. Chinese Journal of Biological Control, 2016, 32 (6): 735- 742. | 
																													
																						|  | 陈兵, 康乐.  昆虫对环境温度胁迫的适应与种群分化. 自然科学进展, 2005, 15 (3): 265- 271. doi: 10.3321/j.issn:1002-008X.2005.03.002
 | 
																													
																						|  | Chen B ,  Kang L .  Adaptation and population differentiation of insects to temperature stress. Progress in Natural Science, 2005, 15 (3): 265- 271. doi: 10.3321/j.issn:1002-008X.2005.03.002
 | 
																													
																						|  | 冯明光.  时间-剂量-死亡率模型取代机率分析技术. 昆虫知识, 1998, 35 (4): 233- 237. | 
																													
																						|  | Feng M G .  Replacement of probability analysis technique to time-dose-mortality model. Entomological Knowledge, 1998, 35 (4): 233- 237. | 
																													
																						|  | 蒋杰贤, 王东生, 曾爱平, 等.  温度对甜菜夜蛾核型多角体病毒流行的影响. 生态学报, 2004, 24 (8): 1724- 1730. doi: 10.3321/j.issn:1000-0933.2004.08.020
 | 
																													
																						|  | Jiang J X ,  Wang D S ,  Zeng A P , et al.  Influence of incubation and inoculation temperatures on the epizootic of Spodoptera exigua nuclear polyhedrosis virus. Acta Ecologica Sinica, 2004, 24 (8): 1724- 1730. doi: 10.3321/j.issn:1000-0933.2004.08.020
 | 
																													
																						|  | 秦晶, 张小香, 高鹏, 等.  一种新的昆虫热诱导型HSP70基因的克隆与表达分析. 应用昆虫学报, 2017, 54 (3): 380- 391. | 
																													
																						|  | Qin J ,  Zhang X X ,  Gao P , et al.  Cloning and expression profile of a novel, thermal, inducible HSP70 gene in insects. Chinese Journal of Applied Entomology, 2017, 54 (3): 380- 391. | 
																													
																						|  | 唐启义, 冯明光.  DPS©数据处理系统——实验设计、统计分析及模型优化. 北京: 科学出版社, 2006. | 
																													
																						|  | Tang Q Y ,  Feng M G .  DPS © Data processing system-experimental design, statistical analysis and modeling. Beijing: Science Press, 2006. | 
																													
																						|  | 王小艺. 2005. 白蜡窄吉丁的生物学及其生物防治研究. 北京: 中国林业科学研究院博士后出站报告. | 
																													
																						|  | Wang X Y. 2005. Biology of the Emerald Ash Borer and Its Biological Control. Beijing: Postdoctoral Research Report of Chinese Academy of Forestry. [in Chinese] | 
																													
																						|  | 王小艺, 杨忠岐, GouldJ R, 等.  白蜡窄吉丁(鞘翅目: 吉丁甲科)的生物防治研究进展. 中国生物防治学报, 2015, 31 (5): 666- 678. | 
																													
																						|  | Wang X Y ,  Yang Z Q ,  Gould J R , et al.  Biological control progress of Agrilus planipennis (Coleoptera: Buprestidae). Chinese Journal of Biological Control, 2015, 31 (5): 666- 678. | 
																													
																						|  | 王艳敏, 仵均祥, 万方浩.  昆虫对极端高低温胁迫的响应研究. 环境昆虫学报, 2010, 32 (2): 250- 255. doi: 10.3969/j.issn.1674-0858.2010.02.018
 | 
																													
																						|  | Wang Y M ,  Wu J X ,  Wan F H .  Response of insects to extreme high and low temperature stresses. Journal of Environmental Entomology, 2010, 32 (2): 250- 255. doi: 10.3969/j.issn.1674-0858.2010.02.018
 | 
																													
																						|  | 王智翔, 陈永林.  环境温湿度对狭翅雏蝗体温与含水量的影响. 昆虫学报, 1989, 32 (3): 278- 285. doi: 10.3321/j.issn:0454-6296.1989.03.020
 | 
																													
																						|  | Wang Z X ,  Chen Y L .  The influence of environmental temperature and humidity on the body temperature and water content of Chorthippus dubius (Zub.). Acta Entomologica Sinica, 1989, 32 (3): 278- 285. doi: 10.3321/j.issn:0454-6296.1989.03.020
 | 
																													
																						|  | 袁瑞玲, 杨珊, 冯丹, 等.  温度、湿度、光照对桔小实蝇飞行能力的影响. 环境昆虫学报, 2016, 38 (5): 903- 911. | 
																													
																						|  | Yuan R L ,  Yang S ,  Feng D , et al.  Effects of temperature, humidity and light on the flight ability of Bactrocera dorsalis (Hendel). Journal of Environmental Entomology, 2016, 38 (5): 903- 911. | 
																													
																						|  | CFIA. [2019-07-01]. Natural resources Canada, emerald ash borer. https://www.nrcan.gc.ca/forests/fire-insects-disturbances/top-insects/13377. | 
																													
																						|  | Chiu M C ,  Kuo J J ,  Kuo M H .  Life stage-dependent effects of experimental heat waves on an insect herbivore. Ecological Entomology, 2015, 40 (2): 175- 181. doi: 10.1111/een.12173
 | 
																													
																						|  | Crosthwaite J C ,  Sobek S ,  Lyons D B , et al.  The overwintering physiology of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Journal of Insect Physiology, 2011, 57 (1): 166- 173. doi: 10.1016/j.jinsphys.2010.11.003
 | 
																													
																						|  | Duan J J ,  Watt T ,  Taylor P , et al.  Effects of ambient temperature on egg and larval development of the invasive emerald ash borer (Coleoptera: Buprestidae): implications for laboratory rearing. Journal of Economic Entomology, 2013, 106 (5): 2101- 2108. doi: 10.1603/EC13131
 | 
																													
																						|  | Duan J J ,  Jennings D E ,  Williams D C , et al.  Patterns of parasitoid host utilization and development across a range of temperatures: implications for biological control of an invasive forest pest. BioControl, 2014, 59 (6): 659- 669. doi: 10.1007/s10526-014-9604-9
 | 
																													
																						|  | Emana G D .  Comparative studies of the influence of relative humidity and temperature on the longevity and fecundity of the parasitoid, Cotesia flavipes. Journal of Insect Science, 2007, 7, 1- 7. | 
																													
																						|  | Liang L ,  Fei S L .  Divergence of the potential invasion range of emerald ash borer and its host distribution in North America under climate change. Climatic Change, 2014, 122 (4): 735- 746. doi: 10.1007/s10584-013-1024-9
 | 
																													
																						|  | Morin R S ,  Liebhold A M ,  Pugh S A , et al.  Regional assessment of emerald ash borer, Agrilus planipennis, impacts in forests of the Eastern United States. Biological Invasions, 2017, 19 (2): 703- 711. doi: 10.1007/s10530-016-1296-x
 | 
																													
																						|  | Murphy T C ,  Gould J R ,  Van D , et al.  Interactions between woodpecker attack and parasitism by introduced parasitoids of the emerald ash borer. Biological Control, 2018, 122, 109- 117. doi: 10.1016/j.biocontrol.2018.04.011
 | 
																													
																						|  | Orlova-Bienkowskaja M J ,  Volkovitsh M G .  Are native ranges of the most destructive invasive pests well known? A case study of the native range of the emerald ash borer, Agrilus planipennis (Coleoptera: Buprestidae). Biological Invasions, 2018, 20 (5): 1275- 1286. doi: 10.1007/s10530-017-1626-7
 | 
																													
																						|  | Preisler H K ,  Robertson J L .  Analysis of time-dose-mortality data. Journal of Economic Entomology, 1989, 82 (6): 1534- 1542. doi: 10.1093/jee/82.6.1534
 | 
																													
																						|  | Rigsby C M ,  Cipollini D ,  Amstutz E M , et al.  Water conservation features of ova of Agrilus planipennis (Coleoptera: Buprestidae). Environmental Entomology, 2013, 42 (2): 363- 369. doi: 10.1603/EN12226
 | 
																													
																						|  | Selikhovkin A V ,  Popovichev B G ,  Mandelshtam M Y , et al.  The frontline of invasion: the current northern limit of the invasive range of emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), in European Russia. Baltic Forestry, 2017, 23 (1): 309- 315. | 
																													
																						|  | Simões P M ,  Ott S R ,  Niven J E .  Environmental adaptation, phenotypic plasticity, and associative learning in insects: the desert locust as a case study. Integrative and Comparative Biology, 2016, 56 (5): 914- 924. doi: 10.1093/icb/icw100
 | 
																													
																						|  | Singh T ,  Bhat M M ,  Khan M A .  Insect adaptations to changing environments-temperature and humidity. International Journal of Industrial Entomology, 2009, 19 (1): 155- 164. | 
																													
																						|  | Tussey D A ,  Aukema B H ,  Charvoz A M , et al.  Effects of adult feeding and overwintering conditions on energy reserves and flight performance of emerald ash borer (Coleoptera: Buprestidae). Environmental Entomology, 2018, 47 (3): 755- 763. doi: 10.1093/ee/nvy040
 | 
																													
																						|  | USDA. Animal and plant health inspection service, emerald ash borer. https://www.aphis.usda.gov/aphis/ourfocus/planthealth/plant-pest-and-disease-programs/pests-and-diseases/eme. | 
																													
																						|  | Wang L ,  Huang J ,  You M , et al.  Time-dose-mortality modelling and virulence indices for six strains of Verticillium lecanii against sweetpotato whitefly, Bemisia tabaci (Gennadius). Journal of Applied Entomology, 2004, 128 (7): 494- 500. doi: 10.1111/j.1439-0418.2004.00879.x
 | 
																													
																						|  | Xu Q ,  Zou Q ,  Zheng H Z , et al.  Three heat shock proteins from Spodoptera exigua: gene cloning, characterization and comparative stress response during heat and cold shocks. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 2011, 159 (2): 92- 102. |