欢迎访问林业科学,今天是

林业科学 ›› 2021, Vol. 57 ›› Issue (2): 31-38.doi: 10.11707/j.1001-7488.20210204

• 论文与研究报告 • 上一篇    下一篇

基于机载激光雷达数据的森林蓄积量模型研建

曾伟生,孙乡楠,王六如,王威,蒲莹   

  1. 国家林业和草原局调查规划设计院 北京 100714
  • 收稿日期:2020-02-17 出版日期:2021-02-25 发布日期:2021-03-29
  • 基金资助:
    国家自然科学基金项目(31770676);中国国土勘测规划院招投标项目"主要树种航空林分材积表编制"(GXTC-A-19070081)

Development of Forest Stand Volume Models Based on Airborne Laser Scanning Data

Weisheng Zeng,Xiangnan Sun,Liuru Wang,Wei Wang,Ying Pu   

  1. Academy of Forest Inventory and Planning, National Forestry and Grassland Administration Beijing 100714
  • Received:2020-02-17 Online:2021-02-25 Published:2021-03-29

摘要:

目的: 建立变量相同、结构稳定、具有普适性的基于机载激光雷达数据的森林蓄积量预估模型,为规范森林蓄积量建模与评价提供科学参考,为森林资源调查提供计量依据。方法: 利用东北林区落叶松林、红松林、杨树林和桦树林4种森林类型790块样地的激光雷达数据和地面实测蓄积量数据,首先采用多元线性回归和非线性回归方法,分别建立基于机载激光雷达数据的森林蓄积量回归模型,通过对比分析,确定具有相同变量和统一结构形成的普适性模型;然后采用哑变量建模方法,建立基于相同激光雷达变量的不同森林类型蓄积量模型。结果: 4种森林类型线性蓄积量回归模型的解释变量个数在2~6之间,确定系数(R2)在0.701~0.827之间;非线性蓄积量回归模型的解释变量个数在2~4之间,R2在0.707~0.818之间。基于点云平均高度和平均强度的落叶松林、红松林、杨树林、桦树林非线性二元蓄积量模型,其R2分别为0.679、0.814、0.698和0.703,平均预估误差分别为4.26%、2.90%、3.68%和3.83%,平均百分标准误差分别为24.44%、18.23%、21.47%和23.26%。结论: 基于机载激光雷达数据估计森林蓄积量,非线性模型优于线性模型;基于点云平均高度和平均强度的二元蓄积量模型具有普适性,可作为森林蓄积量估计的标准模型;本研究建立的4种森林类型蓄积量模型,其预估精度均达到森林资源调查相关技术规定要求,可在实践中推广应用。

关键词: 机载激光雷达, 森林蓄积量, 线性模型, 非线性模型, 哑变量模型

Abstract:

Objective: This study aimed to develop a generalized forest volume model with same variables and stable structure based on airborne laser scanning(ALS) data, which would provide a reference for standardizing forest volume modeling and evaluation. Method: Based on the ALS data and field measurement data of 790 sample plots distributed across the larch(Larix spp.), Korean pine(Pinus koraiensis), poplar(Populus spp.) and birch(Betula spp.) forest stands in northeastern China, the stand volume regression models were developed through multiple linear regression and nonlinear regression methods, and the generalized model with same variables and unified structure was determined by comparison and analysis. Then, the stand volume models with the same ALS variables were developed jointly for different forest types, using the dummy variable modeling approach. Result: The developed multiple linear volume regression models for the 4 stand types have 2-6 explainable variables and the coefficients of determination(R2) are 0.701-0.827; the nonlinear models have 2-4 explainable variables and the R2 are 0.707-0.818. The R2 of two-variable nonlinear volume models based on mean height and mean intensity of point clouds are 0.679, 0.814, 0.698 and 0.703 for larch, Korean pine, poplar and birth forest stands, respectively; the mean prediction errors(MPEs) are 4.26%, 2.90%, 3.68% and 3.83%, and the mean percent standard errors(MPSEs) are 24.44%, 18.23%, 21.47% and 23.26%, respectively. Conclusion: For estimating stand volume based on ALS data, the nonlinear model might be better than the linear model, and the two-variable model based on mean height and mean intensity of point clouds might be generally applicable, which could be defined as standard model for estimating stand volume. The stand volume models developed in this study for 4 forest types using dummy variable modeling approach could meet the need of precision requirements to relevant regulations on forest resource inventory, indicating that the models could be applied in practice.

Key words: airborne laser scanning, forest volume, linear model, nonlinear model, dummy variable model

中图分类号: